Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose

Burleigh, Mia; Liddle, Luke; Muggeridge, David J.; Monaghan, Christopher; Sculthorpe, Nicholas; Butcher, John; Henriquez, Fiona; Easton, Chris

Published in:
Nitric Oxide

DOI:
10.1016/j.niox.2019.04.010

Published: 01/08/2019

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Accepted Manuscript

Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose

Mia Burleigh, Luke Liddle, David J. Muggeridge, Christopher Monaghan, Nicholas Sculthorpe, John Butcher, Fiona Henriquez, Chris Easton

PII: S1089-8603(19)30057-6
DOI: https://doi.org/10.1016/j.niox.2019.04.010
Reference: YNIOX 1891

To appear in: Nitric Oxide

Received Date: 15 February 2019
Revised Date: 9 April 2019
Accepted Date: 29 April 2019

Please cite this article as: M. Burleigh, L. Liddle, D.J. Muggeridge, C. Monaghan, N. Sculthorpe, J. Butcher, F. Henriquez, C. Easton, Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose, Nitric Oxide (2019), doi: https://doi.org/10.1016/j.niox.2019.04.010.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose

Running Title: Beetroot juice improves markers of oral health

Mia Burleigh¹, Luke Liddle¹, David J. Muggeridge², Christopher Monaghan¹, Nicholas Sculthorpe¹, John Butcher³, Fiona Henriquez¹, Chris Easton¹

¹Institute of Clinical Health and Exercise Sciences, University of the West of Scotland, Blantyre, G72 0LH, Scotland.
²Institute of Health Research & Innovation, Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, Scotland.
³Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, Scotland.

Corresponding author: Dr Chris Easton
University of the West of Scotland
Blantyre
G72 0LH
Scotland
T: 01698 283 100
E: chris.easton@uws.ac.uk
Abstract

Nitrate (NO$_3^-$) contained in food and beverages can transiently increase nitric oxide (NO) availability following a stepwise reduction to nitrite (NO$_2^-$) by commensal bacteria in the oral cavity. We tested the hypothesis that regular ingestion of dietary NO$_3^-$ would influence the oral microbiome, the capacity to reduce NO$_3^-$ to NO$_2^-$ in saliva, and the vascular responses to an acute dose of NO$_3^-$.

The abundance of bacterial species on the tongue, the availability of NO markers, and vascular function were assessed in 11 healthy males before and after 7 days of supplementation with NO$_3^-$-rich beetroot juice and a NO$_3^-$-depleted placebo. As expected, saliva and plasma NO$_2^-$ and NO$_3^-$ were significantly elevated after NO$_3^-$ supplementation (all $P < 0.05$) but not placebo. We found that NO$_3^-$ supplementation increased salivary pH (7.13 ± 0.54 to 7.39 ± 0.68, $P = 0.043$) and altered the abundance of some bacteria previously implicated in NO$_3^-$ reduction: *Neisseria* (from 2% ± 3% to 9% ± 5%, $P < 0.001$), *Prevotella* (from 34% ± 17% to 23% ± 11%, $P = 0.001$) and *Actinomyces* (from 1% ± 1% to 0.5% ± 0.4%). Despite these alterations to the oral microbiota, an acute dose of NO$_3^-$ increased salivary and plasma NO$_2^-$, reduced systolic blood pressure and increased the response to flow mediated dilation to a similar extent before and after 7 days of supplementation ($P > 0.05$).

Our study establishes that supplementing the diet with NO$_3^-$ for a sustained period can alter the oral environment in favour of health but does not impact the response to an acute NO$_3^-$ dose. Acute ingestion of NO$_3^-$ results in transient improvements in vascular function but the dietary induced adaptations to the oral bacteria did not enhance these effects.
1. Introduction

The metabolic and immunological activity of the hundreds of species of bacteria that live in and on the human body can directly influence biological function and health. The presence of dysbiotic microbiomes has been linked to various pathologies which include allergies, asthma, inflammatory diseases, obesity, cardiovascular disease and the metabolic syndrome [1]. Conversely, certain commensal microbes from the genera *Granulicatella, Actinomyces*, *Veillonella*, *Prevotella*, *Neisseria*, *Haemophilus*, and *Rothia* are thought to contribute to the generation of nitric oxide (NO) [2,3]. Myriad biological processes are critically dependent on NO, including host defence via antimicrobial actions [4], regulation of mucosal blood flow and mucus generation [5], regulation of smooth muscle contraction [6,7], cerebral blood flow [8], glucose homeostasis [9], and mitochondrial function [10].

Inorganic nitrate (NO$_3^-$) is regularly consumed in the diet through foods such as beetroot and green leafy vegetables [11]. NO$_3^-$ enters the gastrointestinal tract where it is rapidly absorbed, enters the circulation, and is secreted in the saliva [12]. Here, it can interact with bacteria concentrated on the dorsal surface of the tongue [2]. Some species of bacteria use the NO$_3^-$ as an alternative electron acceptor which reduces the ion to nitrite (NO$_2^-$). The NO$_2^-$ in saliva is then swallowed and enters the stomach. In the acidic environment of the stomach, NO$_2^-$ forms nitrous acid which is further converted to nitrosating species and subsequently to bioactive NO in the presence of ascorbic acid [13]. This pathway is known as the enterosalivary NO$_3^-$-NO$_2^-$-NO pathway [14]. Alternatively, NO$_3^-$ and NO$_2^-$ can be stored in the blood and tissues for conversion to NO when endogenous production of NO via the NO synthases (NOS) is limited [15]. The ingestion of NO$_3^-$-rich beetroot juice has been shown to increase the availability of NO and improve exercise performance in simulated altitude [16], reduce blood pressure (BP) [17], enhance endothelial function [6], and is protective against models of ischemia/reperfusion injury [18]. On the other hand, a recent meta-analysis reported that NO$_3^-$ supplementation has only small and trivial effects on exercise performance [19].
We have shown previously that individuals with a higher abundance of NO_3^- reducing bacteria were able to generate more salivary NO_2^- and at a faster rate following the ingestion of NO_3^--rich beetroot juice [20]. In contrast, when the enzymatic activity of bacteria in the mouth is disrupted by antibiotic use or rinsing the mouth with antibacterial mouthwash, the BP lowering effects of NO_3^- are abolished [14,21–23]. Oral microbiota live in regulated communities [24] in which they can use quorum sensing and potassium ion channel mediated electrical signalling to communicate and rapidly respond to environmental stimuli [25]. This allows them to maintain the functional and structural integrity of their ecosystems via replication and alterations to their gene expression [26,27]. The composition of an individual’s diet can rapidly alter the conditions of the oral cavity by varying substrate availability for commensal bacteria and environmental factors such as pH.

Given the malleability of the oral environment, previous research has sought to determine the effects of dietary NO_3^- supplementation on the oral microbiome with a view to optimising the enterosalivary pathway to improve health. In an animal model, Hyde and colleagues [28] found that the abundance of the NO_3^- reducer *Haemophilus parainfluenzae* increased following NaNO_3^- supplementation. In hypercholesteremia patients, Velmurugan et al. (2016) reported that 6 weeks of beetroot juice increased the abundance of *Neisseria* and *Rothia*. Recently, Vanhatalo and colleagues [30] expanded these findings in healthy young and older adults showing that 10 days of beetroot juice supplementation increased the abundance of *Neisseria* and *Rothia* with concomitant reductions in *Prevotella* and *Veillonella*.

Whilst it is has been shown that NO_3^- supplementation can alter the microbiome, it is presently unclear how this impacts the capacity to reduce NO_3^- following a dietary load. Based on our previous findings [19], one may hypothesise that an increased abundance of NO_3^--reducing bacteria will increase salivary and plasma NO_2^- production and enhance the acute vascular responses to dietary NO_3^-. Therefore, our primary objective was to assess the effects of 7 days of beetroot juice supplementation on the abundance of NO_3^--reducing bacteria in the oral cavity and assess the impact of these changes on...
NO metabolites and markers of vascular function in healthy adults immediately following a NO$_3^-$ dose.

2. Methods

2.1. Ethical approval

The study was approved by the School of Science and Sport Ethics Committee at The University of the West of Scotland. All procedures described were conducted in accordance with the Declaration of Helsinki 1974 and its later amendments.

2.2. Participants

Eleven healthy males (age 30 ± 7 years, stature 179 ± 7 cm, and body mass 86.9 ± 14.1 kg) volunteered and provided written informed consent prior to participating in the study. All participants were in good cardiovascular and oral health and did not report any use of antibacterial mouthwash or antibiotics for at least 6 months prior to study commencement. They were free from non-prescription medication including those known to interfere with stomach acid production and were not taking any prescribed medication. Health status was confirmed by completion of a medical questionnaire and The World Health Organisation’s oral health questionnaire was used to ascertain oral health status.

2.3. Experimental Design

Participants were required to attend the laboratory on four separate occasions for this placebo-controlled, single blind randomised crossover study. The study comprised two separate 7 day dietary supplementation phases, each preceded by a baseline trial (day 0) and completed with a post-supplementation trial (day 8). In one arm of the study, participants ingested 70 ml of NO$_3^-$-rich beetroot juice (~6.2 mmol NO$_3^-$) (Pro-Elite Shots, James White Drinks Ltd., Suffolk, England) in the morning and 70 ml in the evening. In the other arm, participants ingested the same volume of NO$_3^-$-depleted
beetroot juice (Placebo shots, James White Drinks Ltd., Suffolk, England). Both versions of the beetroot juice were identical in taste and appearance. The supplementation phases were separated by a prolonged washout period (4 weeks) as it is currently unclear how long it takes the oral microbiome to return to baseline following modification via dietary NO$_3^-$.

All experimental trials were identical with the exception that an acute NO$_3^-$ response test was carried out on days 0 and 8 of the NO$_3^-$-rich beetroot juice phase but not the placebo phase. The decision to exclude this protocol from the placebo phase was based on the premise that the oral microbiome is highly responsive to dietary stimuli [31,32] and a large amount of NO$_3^-$ on day 0 might have altered the post-supplementation markers in the placebo phase. Participants were informed that the acute NO$_3^-$ response test would be implemented in one of the two testing arms and they were not aware that this was only in the NO$_3^-$-rich phase.

2.4. Procedures

Prior to the first trial, participants were briefed on procedures and were provided with a food diary in which they recorded all foods consumed 7 days prior to the trial and during the supplementation period. This diary was used to replicate diet in the week preceding the second supplementation phase. Participants arrived at the laboratory on the morning of each trial in a fasted and euhydrated state after consuming 500 ml of water 1 h before each trial. Participants were instructed to avoid strenuous exercise for 24 h and caffeine for 12 h before each trial. On the morning of each trial, participants were requested not to brush their teeth and tongue or chew gum. They were also requested not to use mouthwash throughout the study and report any changes in health status. Participants provided assurance of their compliance with these instructions via completion of a checklist on each visit.

Anthropometric characteristics were recorded at the beginning of each visit using conventional methods. Following this, participants lay supine for the remainder of the experiment. The posterior dorsal surface of the tongue was swabbed for 1 min with a sterile Hydraflock swab (Puritan HydraFlock Swabs, Puritan Diagnostics LLC,
Guilford, Maine, USA.). This area of the tongue is known to harbour NO\textsubscript{3}- reducing bacteria and is the area of the oral cavity in which the majority of NO\textsubscript{3}- reduction activity occurs [2]. The swabs were transferred to transport tubes containing 0.85 ml of buffered sterile saline and 0.15 ml of glycerol and subsequently frozen and stored at -80°C.

No further measurements were collected for 30 min to ensure plasma [NO\textsubscript{2}-] had stabilised following the change in body posture [33]. Subsequently, heart rate (HR) was measured via telemetry (Polar Electro, Oy, Finland) and systolic BP (SBP) and diastolic BP (DBP) were recorded in triplicate using an automated device (Orman M6, Intellisense, Hoofdorp, Netherlands). Mean arterial pressure (MAP) was calculated using the following equation:

\[
MAP = \frac{2 \times DBP + SBP}{3}
\]

Endothelial function of the brachial artery was then assessed by flow mediated dilation (FMD), described in detail below. Venous blood was collected via venepuncture from the forearm in 4 ml aliquots in vacutainer tubes containing ethylenediaminetetraacetic acid (BD vacutainer K2E 7.2mg, Plymouth, U.K.). Samples of whole blood were immediately centrifuged for 10 min at 4000 rpm at 4°C (Harrier 18/80, Henderson Biomedical, UK) following collection. Samples of unstimulated saliva were concurrently collected via an oral swab (Saliva Bio Oral Swab (SOS) Salimetrics, Pennsylvania, USA) placed under the tongue for 3 min. Swabs were transferred to a collection tube (Sartedt, Aktiengesellschaft & Co, Numbrecht, Germany) and centrifuged at 4000 rpm for 10 min at 4°C (Harrier 18/80, Henderson Biomedical, UK). Following centrifugation, the samples of plasma and saliva were immediately stored at -80°C for later analysis of NO\textsubscript{3}- and NO\textsubscript{2}- content via ozone-based chemiluminescence. The swabs were analysed and found to contain negligible levels NO\textsubscript{3}- and NO\textsubscript{2}-.

2.4.1. Acute Nitrate Response Test

On days 0 and 8 of the NO₃⁻-rich supplementation phase, participants completed an acute NO₃⁻ response test following completion of the procedures described above. In this component, participants ingested 2 x 70 ml of NO₃⁻-rich beetroot juice (~12.4 mmol NO₃⁻, James White Drinks Ltd., Suffolk, England). A sample of saliva was collected 90 min after ingestion followed by a blood sample, and measurements of BP and FMD at 150 min. This protocol facilitated the comparison of NO₃⁻ metabolism before and after the expected alteration of the oral microbiome.

2.4.2. Flow Mediated Dilation

On the contralateral arm to that used for blood collection, the endothelium-dependent vascular responses of the brachial artery were assessed by high-resolution ultrasound imaging and automated vessel diameter measurements. Ultrasound images were recorded using a Vivid 7 ultrasound machine (GE Vingmed, Horten, Norway) with a L10 11MHz linear array transducer. A straight, non-branching segment of the brachial artery above the antecubital fossa was identified and imaged in the longitudinal plane with simultaneous capture of blood flow gated pulse wave using Doppler imaging. The Doppler gate was set to encompass the majority of the width of the artery and was angle corrected at 60°. The brachial artery diameter was initially recorded for 1 min (baseline). A cuff on the upper forearm (distal to the imaging site) was then inflated to supra-systolic pressure (220 mmHg) for 5 min using a rapid cuff inflator (Hockansen, Bellevue, WA, USA). The cuff was then rapidly deflated and the same segment of the brachial artery was imaged for 5 min with concurrent measurement of blood flow.

Automatic edge detection software (Brachial Analyzer, Medical Imaging Applications LLC, Coralville) was used to measure the diameter of the brachial artery and blood flow using the envelope of the Doppler spectral traces and to calculate hyperaemic shear. The
area under the curve for the hyperaemic shear data was then measured up to the point of maximal arterial dilation using the Reimann sum technique. The change in brachial artery diameter was calculated using a 3 s average and expressed as percentage change from baseline. As FMD changes are partly dependent upon vessel diameter, the absolute diameter changes were also calculated. The coefficient of variation (CV) for the FMD measurement in our laboratory is 5.6%.

2.4.3. Analysis of saliva and plasma samples

The pH of saliva samples was measured in duplicate with a circular electrode pH-meter 1140 Mettler Toledo (Greisensee, Switzerland) which has a precision of 0.01 pH unit. The measured pH value was not accepted until an unchanged pH value was observed for a period of at least 7 s. Calibration of the pH meter was performed before analysis and after every 10 samples using buffers with known pH (4.01 and 7.00). The electrode was rinsed with deionised water between samples.

For the analysis of plasma and saliva [NO$_2^-$], tri-iodide reagent (2.5 ml glacial acetic acid, 0.5 ml of 18 Ω deionised water, and 25 mg sodium iodide) was placed in a glass purge vessel heated to 50°C and connected to a NO analyser (Sievers NOA 280i, Analytix, UK). A standard curve was created by injecting 100 μL of NO$_2^-$ solutions at various concentrations up to 1000 nM (plasma) and 3000 nM (saliva). Samples were thawed in a water bath at 37°C and 100μL of the sample was injected immediately into the purge vessel in duplicate. Saliva samples were initially diluted with deionised water at a ratio of 1:100 before injection. The NO$_2^-$ content was calculated via the area under the curve using Origin software (version 7.1).

For the analysis of [NO$_3^-$], vanadium reagent (24 mg of vanadium tri-chloride and 3 ml of 1 M hydrochloric acid) was placed into the purge vessel and heated to 90°C. A standard curve was created by injecting 10-25 μL NO$_3^-$ solutions at concentrations up to 100 μM for both plasma and saliva. Plasma samples were initially de-proteinised using 1 M zinc sulfate (ZnSO$_4$) at 1:10 w/v and 1 M sodium hydroxide (NaOH) at a 1:1 ratio. 200 μL of plasma was added to 400 μL of ZnSO$_4$ and 400 μL of NaOH. Each sample
was vortexed for 30 s prior to being centrifuged for 5 min at 4000 rpm and the supernatant was injected into the purge vessel. The NO₃⁻ concentration was calculated as previously described for NO₂⁻.

2.4.4. 16S Metagenomic Sequencing

DNA from the tongue swab samples was isolated (Illumina MasterPure kit, Epicentre, Madison, WI, USA) before shipping to a commercial analysis centre (Omega Bioservices, Norcross, GA, USA). The libraries were prepared using an Illumina 16S Metagenomic Sequencing kit (Illumina, Inc., San Diego, CA, USA) according to the manufacturer’s protocol. The V3-V4 region of the bacterial 16S rRNA gene sequences were amplified using the primer pair containing the gene-specific sequences and Illumina adapter overhang nucleotide sequences. Samples were prepared by combining 12.5 ng of the DNA sample with 12.5 µL of 2x KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Wilmington, MA) and 5 µL of 1 µM of each primer. The full-length primer sequences were: 16S Amplicon PCR Forward Primer (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) and 16S Amplicon PCR Reverse Primer (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCTTAGATCTACGACACAGGACTACHVGGGTATCTAATCC).

Samples were initially subjected to denaturation at 95°C for 3 min followed by 25 x 30 s cycles of denaturation (95°C), annealing (55°C) and extension (72°C), and a final elongation of 5 min at 72°C. The PCR product was cleaned up from the reaction mix with Mag-Bind RxnPure Plus magnetic beads (Omega Bio-tek, Norcross, GA). A second index PCR amplification, used to incorporate barcodes and sequencing adapters into the final PCR product, was performed in 25 µL reactions, using the same master mix conditions as described above. Samples were further subjected to 8 x 30 s cycles of denaturation (95°C), annealing (55°C), and extension (72°C) followed by a 5 min elongation step at 72°C. The library of approximately 600 bases in size was checked using an Agilent 2200 TapeStation and quantified using QuantiFluor dsDNA System (Promega). Following this, libraries were normalised, pooled and
sequenced on the MiSeq (Illumina, San Diego, CA) using the 2 x 300 bp paired-end read setting.

2.4.5. 16s rRNA Gene Data Analysis

Quality filtered data received from the sequencing centre were interrogated using the Qiime 1.8 database [34]. Sequences were clustered de novo and binned into operational taxonomic units (OTU) based on 99% identity. Taxonomy was assigned using the RDP classifier trained to the GreenGenes database (October 2013 release). After removal of singleton reads from the dataset, 964,418 sequences remained with an average of 21,918 sequences per sample. Alpha diversity metrics were calculated by subsampling the OTU table ten times at a depth of 1420 reads per sample. The mean values across the ten subsampled OTU tables were used in diversity calculations. Only species of NO$_3^-$-reducing bacteria that comprised at least 0.01% of the total oral microbiome were included in the subsequent statistical analyses.

2.5. Statistics

The Statistical Package for the Social Sciences (SPSS Version 24.0. Armonk, NY: IBM Corp) was used for statistical analysis. GraphPad Prism version 5 (GraphPad Software Inc., San Diego, USA) was used to create the figures. The distributions of data were assessed using the Shapiro Wilk test and non-parametric tests were used where data were not normally distributed. A two-way repeated measures analysis of variance (ANOVA) was used to assess the main effects of time (pre- (day 0) and post-supplementation (day 8)) and study arm (placebo vs NO$_3^-$) and interaction effects on plasma and salivary NO$_3^-$ and NO$_2^-$, pH, BP measurements, and the abundance of NO$_3^-$-reducing bacteria. For the acute NO$_3^-$-response tests, a two factor ANOVA was used to determine the main effects of time (pre- (day 0) and post-supplementation (day 8)) and measurement (before and after the acute ingestion of beetroot juice) and their interaction on plasma and salivary NO$_3^-$ and NO$_2^-$, pH, and BP measurements. Post-hoc analysis was conducted following a significant main effect or interaction using paired samples t-
tests with Bonferroni correction for multiple pairwise comparisons. The alpha level for declaring statistical significance was set at $P \leq 0.05$. Data are presented as mean ± standard deviation (SD) unless otherwise stated. Probability values are expressed with 95% confidence intervals (95% CI) where appropriate.

3. Results

3.1. Impact of 7 days of NO$_3^-$ supplementation on bacterial abundance

Alpha diversity data are presented in Table 1. The Shannon diversity index and the number of observed OTU’s were similar between study arms and did not change following supplementation (all $P > 0.05$). The abundance of the most prevalent (>1% relative abundance) at each measurement point are included in the supplementary data.

The most abundant five phyla on the tongue across all four visits were Bacteroidetes (38.1 ± 3.5%), Firmicutes (30.7 ± 2.3%), Fusobacteria (12.1 ± 1.4%), Proteobacteria (11.3 ± 4.6%), and Actinobacteria (3.7 ± 0.6%). The relative abundances of Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria did not change after NO$_3^-$ or placebo supplementation and did not differ at baseline between study arms (all $P > 0.05$). There was a main effect of ‘time’ ($P = 0.009$), and ‘study arm’ ($P = 0.04$) on Proteobacteria. The abundance of Proteobacteria significantly increased following NO$_3^-$ supplementation ($P = 0.011$, 95% CI 2.5% - 15.5%) but not placebo ($P > 0.05$). Proteobacteria did not differ at baseline between study arms ($P > 0.05$). The relative abundance of the phyla at each measurement point are included as supplementary data.

Dietary NO$_3^-$ supplementation altered the abundance of four genera of bacteria on the tongue (Table 1). Dietary NO$_3^-$ supplementation reduced the relative abundance of *Prevotella* ($P = 0.021$, 95% CI 2.1% – 20.3%), *Streptococcus* ($P = 0.029$, 95% CI 0.4% – 6.1%) and *Actinomyces* ($P = 0.028$, 95% CI 0.1% - 1.1%) with no change following placebo and no differences at baseline between study arms (all $P > 0.05$). The abundance of *Neisseria* increased from baseline in both the NO$_3^-$ supplementation arm ($P < 0.001$, 95% CI 4.4 – 9.5%) and the placebo ($P = 0.006$, 95% CI 0.9% – 4.2%). There were no differences at baseline between study arms ($P > 0.05$). The magnitude of
the increase in *Neisseria* was greater in the NO$_3^-$ supplementation arm compared to the placebo (*P* = 0.001, 95% CI 2.9% - 8%).

At species level, there were significant effects of time and an arm*time interaction effect on the relative abundance of *Prevotella melaninogenica* (*P* = 0.03, *P* = 0.01) and *Neisseria subflava* (Fig. 1). There was also a significant main effect of ‘time’ on *Actinomyces hyovaginalis* (*P* = 0.01). The relative abundance of *Prevotella melaninogenica* and *Actinomyces hyovaginalis* were lower after 7 days of NO$_3^-$ supplementation compared to pre-supplementation (*P* = 0.001, 95% CI 6.7% – 20% and *P* = 0.002, 95% CI 0.1% - 0.3% respectively) and at both time points in the placebo arm (both *P* < 0.005). The relative abundance of *Prevotella melaninogenica* and *Actinomyces hyovaginalis* did not differ at baseline between study arms and were unaltered by 7 days of placebo supplementation (all *P* > 0.05). The relative abundance of *Neisseria subflava* increased from baseline after 7 days of NO$_3^-$ supplementation (*P* < 0.001, 95% CI 3.5% – 8.6%) and also after 7 days of placebo (*P* = 0.008, 95% CI 0.7% – 3.6%). The magnitude of the increase in *Neisseria subflava* was greater in the NO$_3^-$ supplementation arm compared to the placebo (*P* = 0.001 95% CI 2.3% - 7.3%). There was no difference in the relative abundance of *Neisseria subflava* at baseline between the NO$_3^-$ and placebo supplementation arms (*P* > 0.05). There were no other differences in any other species or genera of bacteria that are thought to contribute to NO$_3^-$ reduction (all *P* > 0.05).
Fig. 1. The % relative abundance of bacterial species that were significantly altered between pre- and post-supplementation. (A) Neisseria subflava, (B) Actinomyces hyovaginalis and (C) Prevotella melaninogenica. * denotes significant change from baseline ($P < 0.05$). Only within condition differences are shown for clarity.
3.2. Impact of 7 days of NO\textsubscript{3} supplementation on salivary pH, NO metabolites, and blood pressure

3.2.1. Salivary pH

There was a significant arm\text{*}time interaction for salivary pH \((P = 0.022)\). There were no differences in salivary pH at baseline (day 0) between the supplementation arms \((P > 0.05)\). In the NO\textsubscript{3} supplementation arm, salivary pH increased from baseline \((P = 0.043, 95\% \text{ CI } 0.1 – 0.48)\) but did not change in the placebo arm \((P = 0.20, \text{Fig. 2})\). The post-NO\textsubscript{3} supplementation salivary pH was also higher than the equivalent value in the placebo arm \((P = 0.05, 95\% \text{ CI } 0.0 – 0.7)\).

Fig. 2. Salivary pH pre- and post-supplementation with NO\textsubscript{3} and placebo. * denotes a significant difference between measurement points \((P \leq 0.05)\).

3.3. Nitrate and nitrite levels in plasma and saliva

There were no differences in baseline measurements of plasma and saliva NO metabolites between the NO\textsubscript{3} and placebo arms of the study (Table 2). Supplementation with NO\textsubscript{3} increased salivary \([\text{NO}_2^-]\) \((P = 0.012, 95\% \text{ CI } 263 – 1701 \mu \text{M})\), plasma \([\text{NO}_2^-]\)
and plasma [NO$_3^-$] ($P < 0.001$, 95% CI 90 – 208 µM). In the placebo arm of the study, none of the metabolites changed from baseline (all $P > 0.05$). The post-supplementation levels of salivary NO$_3^-$, plasma NO$_3^-$, and salivary NO$_2^-$ were higher in the NO$_3^-$ arm compared to the placebo (all $P < 0.001$). Conversely, the post-supplementation levels of plasma NO$_2^-$ did not differ between supplementation arms ($P > 0.05$).

3.4. Blood Pressure, flow mediated dilation, and resting heart rate

There were no differences in SBP, DBP, MAP, flow mediated dilation, or resting heart rate between supplementation arms at baseline (all $P > 0.05$, Table 3). There was a main effect of study arm on MAP, but further interrogation with post hoc analyses revealed no differences between study arms at either measurement point. None of the cardiovascular variables were altered following supplementation with either NO$_3^-$ or placebo (all $P > 0.05$).

3.5. Acute nitrate response test

3.5.1. Nitrate and nitrite metabolism

The levels of NO metabolites in the saliva and plasma are presented in Figure 3. For salivary [NO$_2^-$] and [NO$_3^-$] there was a main effect of ‘time’ (all $P \leq 0.01$), ‘measurement’ (all $P \leq 0.002$) and a ‘time * measurement’ interaction (all $P \leq 0.015$). Salivary [NO$_2^-$] increased following the acute administration of NO$_3^-$ in both the pre-supplementation (day 0) ($P = 0.002$, 95% CI 968 – 3331 µM) and post-supplementation (day 8) acute response tests ($P = 0.043$, 95% CI 50 – 2582 µM). Likewise, salivary NO$_3^-$ was significantly elevated in the acute tests on day 0 ($P < 0.001$, 95% CI 7107 – 16725 µM) and day 8 ($P = 0.039$, 95% CI 400 – 13262 µM). The magnitude of the increase in both salivary [NO$_2^-$] and [NO$_3^-$] was similar on days 0 and 8 (both $P > 0.05$). There were significant main effects of ‘time’ ($P < 0.001$), ‘measurement’ ($P < 0.001$), and a ‘time x measurement’ interaction ($P = 0.001$) on plasma [NO$_3^-$]. For plasma [NO$_2^-$], only the ‘measurement’ main effect was significant ($P = 0.01$). Plasma [NO$_2^-$] and [NO$_3^-$] increased in the acute response tests on both day 0 (NO$_2^-$ $P < 0.001$, 95% CI 214
− 415 nM, NO\textsubscript{3} \(P < 0.001\), 278 − 428 µM) and day 8 (NO\textsubscript{2} \(P = 0.004\), 95% CI 72 - 275 nM, NO\textsubscript{3} \(P < 0.001\), 95% CI 220 – 337 µM). The magnitude of the increase in both plasma [NO\textsubscript{2}] and [NO\textsubscript{3}] was similar on each day (both \(P > 0.05\)).

Fig. 3. Salivary and plasma nitrate and nitrite concentration measured at baseline (day 0), following the acute administration of nitrate (day 0), after 7 days of nitrate supplementation (day 8), and following further acute administration of nitrate (day 8). In the acute response measurements, saliva and plasma were measured 1.5 h and 2.5 h, respectively, after the ingestion of nitrate-rich beetroot juice. (A) Salivary NO\textsubscript{2}, (B) plasma NO\textsubscript{2}, (C) salivary NO\textsubscript{3}, and (D) plasma NO\textsubscript{3}. * denotes significant change from baseline (\(P < 0.05\)).

3.5.2. Blood pressure

BP data in the acute response tests are presented in Figure 4. There was a significant main effect of ‘measurement’ on SBP (\(P = 0.004\)) but no ‘time’ effect or ‘time * measurement’ interaction. SBP was significantly reduced from baseline in the acute
NO$_3^-$ response test on day 0 ($P = 0.05$, 95% CI 0 – 4 mmHg) and on day 8 ($P = 0.031$, 95% CI 0 – 6 mmHg, Fig. 5). The magnitude of the decline in SBP did not differ between days 0 and 8 ($P > 0.05$). DBP and MAP did not differ between any measurements (all $P > 0.05$).

Fig. 4. Blood pressure measured at baseline (day 0), following the acute administration of nitrate (day 0), after 7 days of nitrate supplementation (day 8), and following further acute administration of nitrate (day 8). In the acute response measurements blood pressure was measured 2.5 h after the ingestion of nitrate-rich beetroot juice. (A) Systolic blood pressure, (B)
Diastolic blood pressure, (C) Mean arterial blood pressure. * denotes significant change from baseline ($P < 0.05$).

3.5.3. Flow Mediated Dilation

There was a significant main effect of ‘measurement’ on FMD % ($P = 0.021$). The FMD response increased from baseline in the acute NO$_3^-$ response tests on both day 0 ($P = 0.014$, 95% CI 0.5% – 3.2%) and day 8 ($P = 0.042$, 95% CI 0.1% – 3.8%, Fig.5). The magnitude of the FMD response was similar between days 0 and day 8 ($P > 0.05$). The acute administration of NO$_3^-$ did not alter the baseline or peak diameter of the brachial artery (all $P > 0.05$).

Fig. 5. The flow mediated dilation response measured at baseline (day 0), following the acute administration of nitrate (day 0), after 7 days of nitrate supplementation (day 8), and following further acute administration of nitrate (day 8). In the acute response measurements flow mediated dilation was measured 2.5 h after the ingestion of nitrate-rich beetroot juice. * denotes significant change from baseline ($P < 0.05$).
4. Discussion

This study demonstrates that, as expected, 7 days of dietary NO$_3^-$ supplementation in healthy adults increases the levels of circulating NO metabolites and alters the abundance of oral bacteria that have been previously implicated in the enterosalivary NO$_3^-$-NO$_2^-$-NO pathway. Importantly, the magnitude of the change we observed in the altered bacterial populations exceeds that of the typical biological variation [35] suggesting dietary NO$_3^-$ supplementation results in meaningful alterations to the oral microbiome. Contrary to our hypothesis, however, the adaptations to the oral environment did not enhance the plasma and salivary responses to a NO$_3^-$ dose. Furthermore, whilst the ingestion of NO$_3^-$-rich beetroot juice transiently increased the FMD response and reduced SBP in the hours immediately following a NO$_3^-$ dose, these effects were not augmented following a period of chronic supplementation and had dissipated 10 h following the final NO$_3^-$ dose. These data suggest that frequent daily doses of NO$_3^-$ would be necessary to result in a sustained reduction in BP, at least in this healthy population.

4.1. Impact of 7 days of nitrate supplementation on tongue bacteria and salivary pH

Our samples had a high number of sequences (964,418) with a median of 21918 sequences per sample indicating that our sequencing coverage was at a sufficient depth to detect meaningful changes in the dataset. This is further confirmed by the high Shannon diversity index of 6.2 ± 0.6 and observed OTU value of 337 ± 81. In concordance with previous findings [30], NO$_3^-$ supplementation did not change the Alpha diversity metric demonstrating that this dietary intervention does not alter the community evenness of bacterial species. However, 7 days of NO$_3^-$ supplementation doubled the abundance of the phylum Proteobacteria. These changes were predominantly due to an increase in the abundance of the genus Neisseria and specifically the species Neisseria subflava.
Salivary pH increased in ten out of our eleven participants (from 7.13 ± 0.54 to 7.39 ± 0.68) following dietary supplementation with NO$_3^-$-rich beetroot juice. These data are in agreement with previous work [36] which found that regular ingestion of beetroot juice increased salivary pH from 7.0 to 7.5. We show further that supplementation with NO$_3^-$-rich beetroot juice reduced the abundance of *Prevotella melaninogenica*, an acidogenic species of bacteria which thrive in environments with a pH between 5.5 and 6 and are thought to contribute to dental caries [37,38]. This species are suggested to be important to NO$_3^-$ reduction by some [3] but not others [39]. One week of NO$_3^-$ supplementation also reduced the abundance of the genera *Streptococcus* and *Actinomyces* and the species *Actinomyces hyovaginalis*. In support of these findings, Doel and colleagues [40] observed lower counts of *Streptococcus mutans* in children with higher levels of NO$_3^-$ and NO$_2^-$ in their saliva. While we did not detect this particular species in any of our samples, this is not unusual in a healthy mouth [41]. Of note, both *Prevotella melaninogenica* and *Streptococcus mutans* have been detected in atherosclerotic plaques and diseased heart valve tissue suggesting these species may also be involved in the pathogenesis of cardiovascular disease [42,43], whilst *Actinomyces* species can produce organic acid leading to the accumulation of intracellular polysaccharides causing dysbiosis in the biofilm leading to caries [44].

Prevotella was recently identified as the most abundant species in periodontal plaque samples followed by *Streptococcus*, with *Actinomyces* identified as the fourth most abundant and it is suggested that these bacteria are involved in the pathogenesis of oral disease [45]. The reduction in the abundance of *Prevotella*, *Actinomyces*, and *Streptococci* are likely due to the antimicrobial effects arising from elevated salivary NO$_2^-$ levels. Studies conducted in-vitro have shown that NO formed from NO$_2^-$ can exert bactericidal effects [46,47]. When present in the mouth, these pathogenic species of bacteria ferment carbohydrates from the diet with strong acids produced as bi-products [47]. A reduction in the number of these bacteria, therefore, will reduce the amount of acid in the mouth and increase the pH of the saliva. These findings are important given that a salivary pH sustained below 5.5 will result in de-mineralisation of the teeth [48] and oral acidosis and acidogenic bacteria are the primary drivers behind dental caries and periodontitis [49].
Dietary NO$_3^-$ supplementation also increased the abundance of *Neisseria subflava* on the tongue. This species of bacteria are able to use oxidised nitrogen compounds as alternative electron acceptors for energy production [50] and can reduce NO$_3^-$ in the mouth [3]. *Neisseria subflava* are generally considered to be non-pathogenic and are associated with good oral health [51]. *Neisseria subflava* favour a pH of between 7 – 7.5 and this species will replicate via binary fission when conditions and resources are optimal [51,52]. The increase in salivary pH resulting from the ingestion of NO$_3^-$-rich beetroot juice coupled with the concomitant reduction of other species within the oral community, likely created an optimal environment for *Neisseria subflava* to propagate.

While the main outcomes of this study are broadly in agreement with two previous studies [29,30], there are some notable differences. Firstly, both of the earlier studies reported that NO$_3^-$-rich beetroot juice supplementation increased the abundance of *Rothia mucilaginosa*. Secondly, Vanhatalo and colleagues [29] reported that NO$_3^-$ supplementation reduced the relative abundance of *Veillonella* whereas we did not. We did, however, observe significant reductions in *Actinomyces* and *Streptococcus*. Although the reasons for these conflicting findings are unclear, inter-individual differences between participants and variations in oral bacteria sampling methodologies provide the most likely explanations. Participants in the present study were a heterogeneous group of healthy males (age 21 – 44 years). The earlier studies used hypercholesteremia patients [29] or separate groups of younger (age 18-22 years) and older (70 – 79 years) adults [30]. Furthermore, both previous studies analysed the abundance of bacteria in saliva samples whereas we collected bacteria directly from the tongue dorsum. While saliva samples will likely provide a more representative composition of bacteria from all areas of the mouth, the dorsal surface of the tongue has been shown to have the highest NO$_3^-$ reduction capacity of all oral sites [39]. The deep clefts of the tongue provide a protective and stable anaerobic environment that is more conducive to the production of biofilms where bacterial NO$_3^-$ reduction can easily occur [2]. In addition, the bacteria in saliva include those shed from biofilms [53] which may be less metabolically active than those found on the tongue [13]. Given that we aimed to
relate bacterial presence to NO$_3^-$-reduction capacity it was considered more appropriate to sample the tongue in this instance.

An unexpected finding of the study was the increase in the abundance of Neisseria subflava following ingestion of the placebo, albeit to a lesser extent than in the NO$_3^-$ supplementation arm. This is all the more surprising given there was a small but non-significant reduction in salivary pH after 7 days of NO$_3^-$-depleted beetroot juice (from 7.22 ± 0.61 to 6.99 ± 1.00); an environment which may be expected to suppress Neisseria subflava. Of note is that both NO$_3^-$-rich and NO$_3^-$-depleted versions of the beetroot juice contained a considerable amount of sugar (~15g total carbohydrate per 70 ml bottle). In the absence of an elevation in salivary NO$_2^-$, cariogenic bacteria will increase acid production in response to an increased availability of carbohydrate. However, beetroot juice also has a high total antioxidant capacity and polyphenol content and is rich in several compounds including phenolic acids, flavonoids, and betalains [54]. It is possible that that Neisseria subflava responded positively to some of these components although the effects are clearly augmented by NO$_3^-$.

Conversely, a previous study [29] did not report alterations to the oral microbiome after placebo. It is not possible to elucidate whether the placebo altered the microbiome of participants in similar work [30] as samples were not collected at baseline. While our data require corroboration, they do suggest that the NO$_3^-$-depleted beetroot juice is not completely inert; a point that should be carefully considered by researchers during study design.

4.2. Consequences of changes in the oral microbiome on nitrate and nitrite levels

Recent work [30] showed that individuals with a high abundance of Prevotella melaninogenica and Campylobacter concisus on the tongue at baseline had less NO$_2^-$ in the plasma and smaller reductions in BP in response to chronic NO$_3^-$ supplementation. The authors suggested that the NO$_2^-$ reduction genes encoded by these bacteria impair downstream NO$_2^-$ accumulation via bacterial reduction of NO$_2^-$ in the oral cavity before it enters the circulation. In the present study, seven days of NO$_3^-$ supplementation reduced the abundance of Prevotella melaninogenica and increased Neisseria subflava.
As expected, both saliva and plasma NO$_2^-$ were elevated from baseline in the NO$_3^-$ arm of the study. However, it is not possible to isolate the influence of the altered microbiome on basal levels of NO$_2^-$ as these parameters were almost certainly increased directly by the ingestion of beetroot juice on the previous day. Nevertheless, previous data from our laboratory has demonstrated that the capacity to generate NO$_2^-$ in the mouth is associated with the abundance of NO$_3^-$-reducing bacteria on the tongue [20]. As a consequence, we also expected that saliva and plasma NO$_2^-$ levels would be augmented post-NO$_3^-$ supplementation following ingestion of a NO$_3^-$-rich beetroot juice bolus. Data from the acute response component of this study, however, provides evidence to the contrary. Firstly; the peak levels of saliva and plasma in response to the beetroot juice bolus were similar before and after the NO$_3^-$ supplementation period. This is particularly intriguing given baseline levels were elevated in the post-supplementation test. This suggests that when “excess” NO$_2^-$ is produced it is excreted, perhaps to avoid excessive drops in BP. Secondly; the magnitude of increase in salivary NO$_2^-$ during the acute response test did not change following 7 days of NO$_3^-$ supplementation. The lack of changes to NO$_2^-$ generation may be due to the fact that *Prevotella* and *Actinomyces*, although antagonistic to oral health, have also been identified as important to NO$_3^-$ reduction either directly or through bacterial community interactions [3]. Therefore, an increase in the abundance of one species of bacteria thought to be important to the NO$_3^-$ reduction process (*Neisseria subflava*) has been offset by reductions in others. An enhanced reduction of NO$_2^-$ to NO in the oral cavity to prevent accumulation of NO$_2^-$ in the saliva [30] seems unlikely in this instance as the abundance of these bacterial species were not altered by NO$_3^-$ supplementation. Furthermore, NO$_2^-$ reduction is a slow reaction and it is questionable whether there would be time for this to occur in the open in vivo salivary system [55].

It should also be acknowledged that the participants in the present study were all in good oral health meaning their oral microbiome was already capable of efficient NO$_3^-$ reduction. Alternatively, there may be other rate limiting steps in the NO$_3^-$ reduction process including gastric emptying and absorption rates, the availability of sialin (NO$_3^-$ transporter in saliva), and salivary flow rates. Further mechanistic insight would also be provided by a direct test of NO$_3^-$ reduction in the mouth, metatranscriptomic analysis to
determine NO$_2^-$ and NO$_3^-$ reductase gene expression of the oral bacteria and collecting data from patients with oral diseases such as periodontitis.

4.3. Consequences of changes in the oral microbiome on vascular function

In the present study, there was a transient reduction in SBP and increase in the FMD response during the acute NO$_3^-$ response tests before and after NO$_3^-$ supplementation. These effects were likely mediated by the increased production of NO resulting in vasodilation [56]. Likewise, it has been previously observed that SBP was similarly reduced after acute (2.5 h after ingestion) and chronic (15 d) supplementation with beetroot juice [57]. Our data extends these findings and demonstrates that adaptations to the oral microbiome arising from sustained NO$_3^-$ supplementation did not in this instance alter vascular responsiveness to a NO$_3^-$ dose. This is not surprising given that the increase in plasma [NO$_2^-$] was not augmented in the post-supplementation acute response test. It should be noted, however, that our participants were a group of normotensive healthy volunteers and results may be different in populations with compromised vascular responsiveness.

It should be highlighted that SBP was only reduced during the acute NO$_3^-$ response tests but not following 7 days of NO$_3^-$ supplementation. This was likely due to the 10 h gap between the ingestion of the last NO$_3^-$ dose and the collection of measurements on day 8. While plasma NO$_2^-$ was elevated from baseline, the magnitude of this increase was small (102 nM) and was seemingly insufficient to reduce BP in this healthy population. Therefore, larger or more frequent doses of NO$_3^-$ may be needed to elicit sustained improvements in vascular function.

5. Conclusions

Seven days of supplementation with NO$_3^-$-rich beetroot juice significantly increased the levels of circulating NO metabolites, increased the pH of saliva, and caused meaningful alterations to the oral microbiome in favour of oral health. These data are significant
given that a high abundance of pathogenic bacteria can cause periodontitis and sustained oral acidosis will result in dental caries. For the first time, our data shows that the aforementioned adaptions to the oral microbiome do not alter the capacity to produce salivary NO\textsubscript{2}- or enhance vascular responsiveness following a dose of beetroot juice, at least in a healthy adult population.

Additional Information

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

The study was conceived by MB and CE and all authors contributed towards the experimental design. Data were collected by MB, LL, CM, NS, and CE. Analysis of FMD data were performed by MB and NS. Analysis of plasma and saliva samples were performed by MB, LL, and CM. Bacterial samples were prepared for analyses by MB and JB. Bioinformatical analysis of bacteria were performed by MB. Statistical analyses were completed by MB and CE. MB prepared the first draft of the manuscript. All authors have critically revised and approved the final version of the manuscript submitted for publication.

Funding

This project was funded by a grant from the Hannah Dairy Research Foundation. Dr David Muggeridge is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB).
Table 1: Pre- and post-supplementation bacterial diversity metrics and relative abundance of the bacteria that were altered by dietary nitrate supplementation.

<table>
<thead>
<tr>
<th>Diversity Metric</th>
<th>Time (Day)</th>
<th>Nitrate</th>
<th>Placebo</th>
<th>ANOVA (P Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shannon Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Pre (0)</td>
<td>6.3 ± 0.6</td>
<td>5.9 ± 0.7</td>
<td>Time = 0.707</td>
</tr>
<tr>
<td></td>
<td>Post (8)</td>
<td>6 ± 0.9</td>
<td>6.6 ± 0.3</td>
<td>Arm = 0.858</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.122</td>
</tr>
<tr>
<td>Observed OTUs</td>
<td>Pre (0)</td>
<td>312 ± 89</td>
<td>349 ± 97</td>
<td>Time = 0.876</td>
</tr>
<tr>
<td></td>
<td>Post (8)</td>
<td>383 ± 56</td>
<td>304 ± 83</td>
<td>Arm = 0.856</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.07</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevotella</td>
<td>Pre (0)</td>
<td>34 ± 17</td>
<td>26 ± 16</td>
<td>Time = 0.283</td>
</tr>
<tr>
<td>(% relative abundance)</td>
<td>Post (8)</td>
<td>23 ± 11*†</td>
<td>31 ± 14</td>
<td>Arm = 0.993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.053</td>
</tr>
<tr>
<td>Neisseria</td>
<td>Pre (0)</td>
<td>2 ± 3</td>
<td>1 ± 1</td>
<td>Time = 0.001</td>
</tr>
<tr>
<td>(% relative abundance)</td>
<td>Post (8)</td>
<td>9 ± 5*†</td>
<td>4 ± 3*</td>
<td>Arm < 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.008</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>Pre (0)</td>
<td>9 ± 6</td>
<td>6 ± 4</td>
<td>Time = 0.404</td>
</tr>
<tr>
<td>(% relative abundance)</td>
<td>Post (8)</td>
<td>6 ± 4*†</td>
<td>8 ± 3</td>
<td>Arm = 0.816</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.006</td>
</tr>
<tr>
<td>Actinomyces</td>
<td>Pre (0)</td>
<td>1.1 ± 0.7</td>
<td>0.9 ± 0.6</td>
<td>Time = 0.376</td>
</tr>
<tr>
<td>(% relative abundance)</td>
<td>Post (8)</td>
<td>0.5 ± 0.4*†</td>
<td>0.7 ± 0.2</td>
<td>Arm = 0.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.164</td>
</tr>
</tbody>
</table>

* denotes a significant difference from the pre-supplementation (day 0).
† denotes a greater change from the pre-supplementation value compared to the placebo arm.
Table 2: Levels of nitric oxide metabolites pre- and post-supplementation in each study arm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time (Day)</th>
<th>Nitrate</th>
<th>Placebo</th>
<th>ANOVA (P Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre (0)</td>
<td>Post (8)</td>
<td></td>
</tr>
<tr>
<td>Plasma nitrite (nM)</td>
<td></td>
<td>150 ± 84</td>
<td>252 ± 165*</td>
<td>Time = 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174 ± 111</td>
<td>220 ± 112</td>
<td>Arm = 0.898</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.290</td>
</tr>
<tr>
<td>Plasma nitrate (µM)</td>
<td></td>
<td>52 ± 24</td>
<td>69 ± 64</td>
<td>Time < 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201 ± 104*†</td>
<td>57 ± 36</td>
<td>Arm < 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.001</td>
</tr>
<tr>
<td>Salivary nitrite (µM)</td>
<td></td>
<td>415 ± 420</td>
<td>365 ± 301</td>
<td>Time = 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arm = 0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.015</td>
</tr>
<tr>
<td>Salivary nitrate (µM)</td>
<td></td>
<td>810 ± 404</td>
<td>746 ± 388</td>
<td>Time = 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arm < 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.001</td>
</tr>
</tbody>
</table>

* denotes a significant difference from the pre-supplementation (day 0).
† denotes a greater change from the pre-supplementation value compared to the placebo arm.
Table 3: Cardiovascular variables pre- and post-supplementation in each study arm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time (Day)</th>
<th>Nitrate</th>
<th>Placebo</th>
<th>ANOVA (P Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>Pre (0)</td>
<td>122 ± 10</td>
<td>124 ± 6</td>
<td>Time = 0.196</td>
</tr>
<tr>
<td></td>
<td>Post (8)</td>
<td>122 ± 6</td>
<td>127 ± 8</td>
<td>Arm = 0.325</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.290</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>Pre (0)</td>
<td>67 ± 7</td>
<td>68 ± 7</td>
<td>Time = 0.141</td>
</tr>
<tr>
<td></td>
<td>Post (8)</td>
<td>66 ± 5</td>
<td>65 ± 6</td>
<td>Arm = 0.771</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.215</td>
</tr>
<tr>
<td>Mean arterial pressure (mmHg)</td>
<td>Pre (0)</td>
<td>85 ± 8</td>
<td>89 ± 6</td>
<td>Time = 0.311</td>
</tr>
<tr>
<td></td>
<td>Post (8)</td>
<td>86 ± 5</td>
<td>91 ± 6</td>
<td>Arm = 0.043</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.581</td>
</tr>
<tr>
<td>Resting heart rate (beat-min⁻¹)</td>
<td>Pre (0)</td>
<td>55 ± 7</td>
<td>55 ± 5</td>
<td>Time = 0.973</td>
</tr>
<tr>
<td></td>
<td>Post (8)</td>
<td>56 ± 8</td>
<td>55 ± 6</td>
<td>Arm = 0.631</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.459</td>
</tr>
<tr>
<td>Flow mediated dilation (%)</td>
<td>Pre (0)</td>
<td>10.46 ± 3.76</td>
<td>12.1 ± 5.25</td>
<td>Time = 0.021</td>
</tr>
<tr>
<td></td>
<td>Post (8)</td>
<td>12.03 ± 5.09</td>
<td>14.05 ± 6.18</td>
<td>Arm = 0.221</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interaction = 0.854</td>
</tr>
</tbody>
</table>
References

Supplementary Fig. 1 Bacterial species that made up > 1% of the dataset displayed in ascending order of abundance. * indicates those which were significantly altered.
Supplementary Fig. 2 The proportions of the five main phyla on the tongue dorsum at the four measurement time points, Pre nitrate, Post nitrate, Pre placebo, and Post placebo. * indicates a significant increase in Proteobacteria from Pre to Post nitrate.
Highlights

Nitrate-rich beetroot juice increased nitric oxide levels and reduced blood pressure

Ingesting beetroot juice for 7 days altered the oral microbiome and increased saliva pH

The abundance of pathogenic bacteria in the mouth was reduced by beetroot juice

Changes to oral bacteria did not augment vascular responses to beetroot juice

Ingestion of beetroot juice may be beneficial for oral and cardiovascular health