Sweat rate measurements after high intensity interval training using body weight

Machado, Alexandre Fernandes; Evangelista, Alexandre Lopes; Miranda, João Marcelo Q.; La Scala Teixeira, Cauê V.; Leite, Gerson; Rica, Roberta Luksevicius; Figueira Junior, Aylton; Baker, Julien; S. Bocalini, Danilo

Published in:
Revista Brasileira de Medicina do Esporte

Published: 01/05/2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 17 Nov 2019
SWEAT RATE MEASUREMENTS AFTER HIGH INTENSITY INTERVAL TRAINING USING BODY WEIGHT

Article in Revista Brasileira de Medicina do Esporte · June 2018
DOI: 10.1590/1517-8692201803178641

9 authors, including:

Alexandre Fernandes Machado
Universidade São Judas Tadeu
36 PUBLICATIONS 9 CITATIONS
SEE PROFILE

Alexandre Evangelista
Universidade Nove de Julho
67 PUBLICATIONS 125 CITATIONS
SEE PROFILE

João Marcelo de Queiroz Miranda
Universidade Nove de Julho
12 PUBLICATIONS 9 CITATIONS
SEE PROFILE

Cauê Vazquez La Scala Teixeira
Universidade Federal de São Paulo
59 PUBLICATIONS 24 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Aging and Resistance Exercise View project

Effects of manual resistance training in elderly hypertensive View project

All content following this page was uploaded by João Marcelo de Queiroz Miranda on 26 June 2018.

The user has requested enhancement of the downloaded file.
INTRODUCTION

Physical activity raises body temperature, increases the sweat rate and accelerates fluid loss during exercise, thereby impairing exercise performance. However, studies using the high intensity interval training (HIIT) approach and its effects on rates of perspiration and hydration are still inconclusive. Objectives: The objective of this study was to assess sweating and water loss during an HIIT workout session, using body weight, with healthy college students. Methods: Twenty male individuals (31 ± 07 years) were split into two groups: Active group (AG) and Inactive group (IG). The HIIT workout protocol, using body weight, consisted of a single bout with 1:1 stimuli, involving jumping jack, mountain climber, burpee and squat jump exercises; and 30” of passive recovery, totaling 20 minutes of exercises. For comparison purposes, after 48 hours all the individuals underwent the continuous running protocol with intensity corresponding to 75% of maximum heart rate for 40 minutes. The intensity of the session was monitored continuously, at each 30”, using the perceived exertion scale for both protocols. To ensure euhydration status, all individuals ingested 500 ml of water 120 minutes before the training session. Results: Significant differences (p= 0.01) were found in body mass after HIIT compared to the Moderate session in both Active (HIIT: -0.60 ± 0.29 kg, Moderate: -0.26 ± 0.12 kg) and Inactive (HIIT: -0.92 ± 0.30 kg, Moderate: -0.26 ± 0.26 kg) groups, however, no differences were found between groups. Absolute sweating rate values comparing moderate and HIIT single bout in Inactive (Moderate: 10.55 ± 10.59 ml/min; HIIT: 28.90 ± 13.88 ml/min) and Active (Moderate: 9.60 ± 4.52 ml/min; HIIT: 26.00 ± 15.06 ml/min) groups were different between types of exercise, but not between groups. Conclusions: The sweating rate is influenced by the intensity of the exercise, being higher after HIIT than after a moderate exercise session. However, the sweating rate variation is not affected by the subjects’ physical activity level. Level of Evidence II; Diagnostic studies-Investigating a diagnostic test.

Keywords: Physical exercise; High-Intensity interval training; Sweat.
INTRODUCTION

The physical activity practice can increase body temperature in up to 15 to 20 times in relation to the temperature in rest, due to the low body efficiency to use the energy for movement. Considering this and with the purpose to promote balance between thermogenesis and central heat dissipation, some thermoregulatory mechanisms are triggered to maintain body internal temperature seamless, protecting the body against overheating.1 Thus, the increase of body temperature raises the sweating rate and, consequently, accelerates the fluid loss during the exercise. In this sense, there is a consensus in the literature that the sweating rate is influenced by the intensity of the exercise, being major when HIIT is used.2

The physiologic effects of dehydration in exercise have been studied through the comparison of many physiologic responses in individuals with partial or total replacement during physical activity practice.3 Although the physiologic indicators assessment is related to the effort’s acute effect, the physical features that contribute to the performance level of the activity’s6 Besides, body water loss could be associated with the intensity, duration, proprieties and quantity of the outfits used during the practice.7

In this view, even though studies challenge its efficacy in some occasions,3 the high-intensity training in treadmill8 bicycle9 and using the body’s weight10,11 has been used with the objective to improve levels of physical fitness as well as health, due to its superiority in relation to moderate exercises.12-14

Nonetheless, studies using the HIIT approach and its effects on sweating and hydration rates are still non conclusive in the literature. The physiologic effects of dehydration in exercise have been studied through the comparison of many physiologic responses in individuals with partial or total replacement during physical activity practice.3 Although the physiologic indicators assessment is related to the effort’s acute effect, the physical features that contribute to the performance level of the activity’s6 Besides, body water loss could be associated with the intensity, duration, proprieties and quantity of the outfits used during the practice.7

In this view, even though studies challenge its efficacy in some occasions,3 the high-intensity training in treadmill8 bicycle9 and using the body’s weight10,11 has been used with the objective to improve levels of physical fitness as well as health, due to its superiority in relation to moderate exercises.12-14

Nonetheless, studies using the HIIT approach and its effects on sweating and hydration rates are still non conclusive in the literature.
The acute single bout moderate session consisted of 40 min of running at a moderate intensity, which was calculated at 75% of maximal heart rate. Maximum heart rate was calculated according to the Karvonen’s equation. The heart rate was monitored by a heart rate monitor (RS800CX; Polar Electro Ltd.) with a chest strap. Participants were able to monitor their current heart rate and were asked to maintain constant exercise intensity at their calculated heart rate.

Anthropometric and sweat rate measurements

Height was measured by a Cardiomed (WCS model) stadiometer, with an accuracy of 115/220 cm. The measurement was performed with the cursor at an angle of 90° in relation to the scale, with the individual in a standing position, keeping feet together in contact with Stadiometer. The subjects were instructed to stay in inspiratory apnea, and head parallels to the ground. Total body mass was measured by a calibrated Filizola electronic scale (Personal Line Model 150) with a 100g scale and a maximum capacity of 150 kg. Body mass index (BMI, kg/m²) was calculated using the equation

\[
\text{BMI} = \frac{\text{weight}}{\text{height}^2}.
\]

To evaluate the sweating rate (SR), all subjects were weighted 15 minutes before the beginning (BW) and shortly after (AW) in both single bout exercise according to previous publications. The SR was expressed as (ml/min) obtained by the following equation:

\[
\text{SR} = \frac{\text{BW} - \text{AW}}{\text{total time of physical activity}}
\]

All subjects ingested 500ml of water and 50g of carbohydrate 40 minutes before both sessions. The environmental parameters in both exercise sessions are described in Table 1.

The rate of perceived exertion (RPE) method was measured for each subject during the period of the study indicated by the RPE through the scale according to previously studies. Briefly, the subjects were told to choose a describer and a number from 0 to 10 (maximum value corresponds to the highest physical exertion experienced by the individual, and the minimum value is the rest condition). To guarantee that the RPE mean data obtained refers to the total training, subjects were asked to answer a question 20 to 30 minutes after the end of the session: “How was your training today?”.

Statistical analysis

The D’Agostino–Pearson test was applied to Gaussian distribution analysis. The paired Student’s t-test and One-way ANOVA followed by Kruskal–Wallis or Bonferroni’s post-hoc test were performed to compare differences in fatigue protocol. Comparison analysis between inactive and active groups was done by a repeated-measures ANOVA, followed by Kruskal–Wallis or Bonferroni’s post-hoc test. An alpha of 0.05 was used to determine statistical significance. All data values were expressed as a mean ± standard deviation. All analysis were performed using SPSS software (v 15.0; IBM, Armonk, NY, USA).

RESULTS

Significant differences (p<0.001) were found between time spent weekly on physical activity among groups (Inactive: 100 ± 15 and Active: 331 ± 53; minute/week).

As showed at Figure 1A, Significant reduction on body mass (p<0.05) (kg) was found in inactive (Before: 81.95 ± 7.66, After: 81.75 ± 7.83) and Active (Before: 81.80 ± 7.82, after: 81.40 ± 7.94) groups after moderate and HIIT single bout, respectively. Additionally, significant changes (p<0.01) (%) were found on body mass after HIIT compared to Moderate session in both Active (HIIT: -0.60 ± 0.29, Moderate: -0.26 ± 0.12) and Inactive (HIIT: -0.92 ± 0.30, Moderate: -0.26 ± 0.26), however, no differences were found between groups.

Similar results were found in sweat rate parameters showed at Figure 1B. Significant differences (p= 0.01) were found on sweat rate comparing Moderate and HIIT single bout in Inactive (Moderate: 10.55 ± 10.59; HIIT: 28.90 ± 13.88) and Active (Moderate: 9.60 ± 4.52; HIIT: 26.00 ± 15.06) groups.

The total distance (Inactive: 4080 ± 719 meters, Active: 6249 ± 801 meters; p<0.001) and total exercise amount (Inactive: 234 ± 63 numbers, Active: 398 ±76 numbers; p<0.001) were higher on Active group as showed in Figure 2A and 2B respectively. The perceived exertion parameters are showed at Figure 2C. No differences were found between groups at Moderate (Inactive: 6.80 ± 0.91; Active: 6.30 ± 0.94) and HIIT (Inactive: 9.80 ± 0.42; Active: 9.70 ± 0.91) session.

Table 1. Environmental parameters at the day test.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moderate</th>
<th>HIIT</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution</td>
<td>33 ± 2</td>
<td>32 ± 1</td>
<td>p> 0.05</td>
</tr>
<tr>
<td>Air humidity</td>
<td>80 ± 2</td>
<td>82 ± 3</td>
<td>p> 0.05</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>26 ± 3</td>
<td>25 ± 2</td>
<td>p> 0.05</td>
</tr>
<tr>
<td>Pressure (hPa)</td>
<td>1027 ± 2</td>
<td>1031 ± 1</td>
<td>p> 0.05</td>
</tr>
<tr>
<td>Wind force (nos)</td>
<td>8 ± 1</td>
<td>7 ± 1</td>
<td>p> 0.05</td>
</tr>
<tr>
<td>Visibility</td>
<td>8939 ± 377</td>
<td>8725 ± 377</td>
<td>p> 0.05</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation.

Figure 1. Values expressed in a mean ± SD of body mass (Panel A) and sweat rate (Panel B) of inactive and active groups.
DISCUSSION

The main findings of the present study are related to the higher rate of sweating on HIIT compared to the moderate intensity exercise, regardless the subjects’ physical activity level. It is known that the sweating rate during exercise is affected by thermal and no thermal mechanisms.23 Besides, the intensity of stimuli as well as the physical fitness level also influences directly in the response of these control mechanisms.23

Although it is simple, the alteration of body mass after physical exercise has been considered a suitable parameter to assess dehydration.24 The body mass variation found in this study was similar other studies.2,25 The body mass reduction is associated with the decrease in the hydric body content, mainly for the maintenance of the temperature to avoid damaging the normal physiologic functions.2 In that way, it is possible to consider that with higher sweating rates, the body mass will be smaller after the practice of exercise.26,27

Regarding the difference between sessions HIIT and moderate, the intensity (all out) used at HIIT’s session can explain the results found in this study. Consequently, it is possible to consider that although the human body has a limitation to take advantage of the energy for movement (20%), about 80% of the energy is wasted in the form of heat27 being proportional to higher intensities. Therefore, in exercises demanding higher oxygen consumption, as HIIT methods, it is possible to consider that the higher energetic expenditure highlighted in the literature28 could induce a higher internal production of heat, which, in turn, increases the sweating rate to maintain even the body temperature.29

Amano et al.2 also reported the connection between intensive methods and higher sweating rates. According to the authors, if there is no increase in the sweating rate, the inner body will be damaged as consequence of the excessive increase of the core’s temperature.29

Besides this, although the total amount of work had been greater in both protocols in the Active group, the perception of effort was not different between the groups, which shows that regardless the fact that the external load was different in function of each one’s physical fitness,30 the internal workload was similar between the groups.

Frazão et al.,15 when applying the HIIT protocol in treadmill also observed that the internal load response, assessed through the perception exertion, was similar for both untrained and trained individuals, although the absolute intensity has been greater with the former. This fact could be associated with the comparable sweating rate found in the groups in the protocols.

Possibly, the differences observed in performance between the groups and the similar responses in effort’s perception and sweating rate are related to the economy of movement. Many works31,32 show that trained individuals present higher economy of movements, that is, they manage to expend fewer calories per time unit compared to untrained people performing tasks with similar absolute intensity.

Thus, in comparison with inactive individuals, people with higher levels of physical activity manage to work more, perhaps because they use the same amount of calories making the same quantity of heat with a similar sweating rate.

Based on the above, the results of the study show that, although active and inactive individuals differ about the work’s production in activities with similar intensities, the perception of the effort and the sweating rate do not differ between individuals with different levels of physical activity.

It is important to highlight that HIIT provides higher sweating rates in moderate physical activity; thus it deserves greater attention to control the exercise’s extrinsic circumstances, such as ambient temperature and liquid replacement pre and post activity.

CONCLUSIONS

The sweating rate is influenced by the intensity of the exercise, being higher after HIIT than after moderate exercise session, however, this sweat rate variation is not affected by the physical activity level of the subjects.

ACKNOWLEDGEMENT

The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) fellowships addressed to Machado AF and Rica RL. The fund providers had no part in the decision to publish and in the preparation of this paper.

All authors declare no potential conflict of interest related to this article.
REFERENCES

