

UWS Academic Portal

Mapping evolution of dynamic web ontologies

Khattak, A. M.; Pervez, Z.; Khan, W. A.; Khan, A. M.; Latif, K.; Lee, S. Y.

Published in:
Information Sciences

DOI:
10.1016/j.ins.2014.12.040

Published: 10/05/2015

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Khattak, A. M., Pervez, Z., Khan, W. A., Khan, A. M., Latif, K., & Lee, S. Y. (2015). Mapping evolution of
dynamic web ontologies. Information Sciences, 303, 101-119. https://doi.org/10.1016/j.ins.2014.12.040

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 24 Jan 2022

https://doi.org/10.1016/j.ins.2014.12.040
https://myresearchspace.uws.ac.uk/portal/en/publications/mapping-evolution-of-dynamic-web-ontologies(36a1180c-caa2-4fdb-85fe-7134f04434e8).html
https://doi.org/10.1016/j.ins.2014.12.040

Mapping Evolution of Dynamic Web Ontologies

A. M. Khattak
a
, Z. Pervez

b
, W. A. Khan

c
, A. M. Khan

d
, K. Latif

e
, S. Y. Lee

c
*

*Corresponding author: sylee@oslab.khu.ac.kr,

Tel: +82-31-201-2514, Fax: +82-31-202-2520
a
 College of Technological Innovations, Zayed University, UAE.

b School of Computing, University of the West of Scotland, United Kingdom.
c
 Department of Computer Engineering, Kyung Hee University, Korea.

d Department of Computer Science, Innopolis University, Russia.
e School of Electrical Engineering and Computer Science, NUST, Pakistan.

Abstract

Information on the web and web services that are revised by stakeholders is growing incredibly. The presentation of

this information has shifted from a representational model of web information with loosely clustered terminology to

semi-formal terminology and even to formal ontology. Mediation (i.e., mapping) is required for systems and

services to share information. Mappings are established between ontologies in order to resolve terminological and

conceptual incompatibilities. Due to new discoveries in the field of information sharing, the body of knowledge has

become more structured and refined. The domain ontologies that represent bodies of knowledge need to be able to

accommodate new information. This allows for the ontology to evolve from one consistent state to another. Changes

in resources cause existing mappings between ontologies to be unreliable and stale. This highlights the need for

mapping evolution (regeneration) as it would eliminate the discrepancies from the existing mappings. In order to re-

establish the mappings between dynamic ontologies, the existing systems require a complete mapping process to be

restructured, and this process is time consuming. This paper proposes a mapping reconciliation approach between

the updated ontologies that has been found to take less time to process compared to the time of existing systems

when only the changed resources are considered and also eliminates the staleness of the existing mappings. The

proposed approach employs the change history of ontology in order to store the ontology change information, which

helps to drastically reduce the reconciliation time of the mappings between dynamic ontologies. A comprehensive

evaluation of the performance of the proposed system on standard data sets has been conducted. The experimental

results of the proposed system in comparison with six existing mapping systems are provided in this paper using 13

different data sets, which support our claims.

Key Words

Ontology Change, Change Management, Change History, Mapping Reconciliation

Mapping Evolution of Dynamic Web Ontologies

1.0 Introduction

The increasing amount of information available on the web places a heavy computational load on the systems that

are designed to access, interpret, manipulate, maintain, merge, integrate, infer, and mine this information [21]. The

fundamental requirement of information exchange among applications, systems, system agents, and web services is

the development of a consistent and comprehensive model for knowledge representation, which is essential for the

sharing of knowledge pertaining to research outcomes, sharing information among independent organizations [6],

and the exchange of information among healthcare systems [31] and among heterogeneous systems and services [3].

In order to make the sharing of information possible, there is a need to model the information more appropriately

while preserving its semantics.

Ontology provides a formal structure (model) with semantics with regard to how an expert perceives the domain

of interest. Ontology is defined as a formal, explicit specification of a shared conceptualization. Ontology is the

main source of semantic web information and its services, which helps to clearly define the meaning of resources

and achieve a better understanding of the work that is shared between a human and computer systems [35, 40].

Service-Oriented Architecture (SOA) and Semantic Web Services Technology are becoming more mature and are

now widely used [10]. The meaningful information and the machine interpretable information that is contained in

ontology helps to create semantic web services that are automated with regard to service discovery, selection, and

interoperability [15].

Current web information can be viewed as the evolution of traditional web information, which ranges from a

collection of web pages to the integration of those pages with services that these sites can use to interoperate with

one another. Interoperability is both collaborative and multifaceted and is needed to overcome the problems of

incompatibilities among organizations, structures, data, architecture, services, and business rules [51]. However,

since the data, architecture, and services are usually provided by autonomous parties, often high interface, structural,

and semantic heterogeneities exist with regard to information storage and exchange [8, 14, 18, 20, 21, 26, 32, 35, 37,

43, 44, 49, 56, 63]. In order to overcome this issue, we utilize the value of data and schema mapping [8, 11, 18, 32,

37, 44, 47, 49, 52]; in other words, the mapping among schema or ontology elements is the definition of semantic

relatedness. Use of ontology in systems dealing with information extraction from a large and complex structured

source of information and web services can yield valuable results [4, 8, 11, 18, 20, 32, 47, 59]. The increased use of

ontology in Information Systems and Knowledge Sharing Systems also increases the significance of ontology

maintenance [21, 37]. However, the large and complex structure and the decentralized nature of the web compel

communities to create their own ontologies to represent information [14, 21, 59]. Thus, mediation among distributed

and autonomous sources is required for exchange of information [8, 18, 21, 32, 44, 49, 63].

The number of information sources is increasing significantly, and this increases the importance of having a

sophisticated mechanism to extract information and to manage the heterogeneity among these information sources.

Mediation (mapping) is used to align two or more ontologies (information sources) for the purpose of information

sharing [5, 8, 32, 35, 44, 46, 49, 57, 63]. These mappings are generated by mapping systems with two main

concerns: accuracy and efficiency (the time required to produce the mappings). Existing mapping systems, such as

Falcon [32], FOAM [18], Lily [63], AgreementMaker [12, 13], Prompt [49], H-Match [8], and MAFRA [44], are

currently considered the best matching and mapping systems. These systems consume a lot of time when mapping

large knowledge databases such as Google Classification
1
, Wiki Classification

2
, ACM Classification Hierarchy

3
,

and MSC Classification Hierarchy
4
. Data-sources are provided by autonomous and independent providers, which

means that these data-sources evolve independently from one another and with flexible structures [27]. This results

in a change to the existing mapping methodologies, which makes these mappings unreliable with regard to the

sharing of information. This is why there is a need for a system that supports mapping for evolving ontologies.

Existing systems complete the mapping process by completely re-creating the mappings among the evolved

ontologies, which is a very time consuming process.

Re-creation of mappings is required for mapped ontologies that are dynamic and subject to change. Existing

systems take more time to re-create mappings as compared to the process of creating the initial mappings as these

systems start the mapping process from scratch; however, the changes in the mapped schemas and regenerated

mediation are not significant [27]. Consequently, a less time consuming scheme that can be used in the

1http://www.google.com/Top/Reference/Libraries/Library_and_Information_Science/Technical_Services/Cataloguing/Classification/
2 http://en.wikipedia.org/wiki/Taxonomic_classification
3 http://www.acm.org/about/class/1998/
4 http://www.math.niu.edu/~rusin/known-math/index/index.html

reconciliation of ontology mappings (mapping evolution) in dynamic and evolving ontologies is proposed in this

research paper in order to support information exchange and reliable service interoperability. The hypothesis of the

proposed approach is to only consider the changed resources in the mapping regeneration process that will not only

reduce the time required for mapping regeneration but will also support updated and reliable mappings for

information sharing and eliminate stale mappings while preserving the same level of accuracy. To achieve this, our

approach uses the Change History Log (CHL) [38] (i.e., local, centralized, and distributed) to map reconciliation in

less time than existing systems. The proposed technique drastically reduces the time required for the re-creation of

mappings between dynamic ontologies. The CHL is used to store the changes occurring in dynamic ontologies,

which are later used for mapping reconciliation. The use of the CHL in ontology matching/mapping helps in the

reconciliation of mappings in dynamic and evolving web ontologies by overcoming the staleness problem associated

with these mappings and reducing the time required to reconcile these mappings. During the reconciliation of

ontology mapping, only the outdated mappings are updated, which saves both time and resources. We have tested

the Falcon, Lily, FOAM, Prompt, AgreementMaker, and H-Match algorithms on 13 different data sets that are

available online and then extended these algorithms with the proposed scheme by incorporating the use of CHL. Our

proposed extensions have been tested on the same data sets and have shown a drastic reduction in the amount of

time required for the reconciliation of these mappings. Detailed experimental results that support our claims are

provided in this paper.

This paper is arranged as follows. Section 2 is a detailed discussion of the matching algorithms. Section 3

describes our proposed time efficient approach for reconciliation of mapping ontologies. Section 4 compares the

experimental results of the proposed scheme with the results of existing systems. Finally, we conclude our

discussion in Section 5 and talk about future applications of our proposed extensions.

2.0 Reconciliation of Ontology Mappings

Mappings are defined between two ontologies at a time, where one is called the source ontology and the other is

called the target ontology. The proposed scheme for mapping reconciliation in dynamic and evolving ontologies is

time efficient and eliminates staleness from the mappings by using ontology changes of the evolving ontologies to

reconcile the mappings. It is based on the concept of the Change History Log (CHL) [38], which contains all the

changes that have occurred in ontology throughout the evolution of the ontology. The change log is required as it

details which ontology resource has changed and may have resulted in unreliable elements that exist in the mappings.

The unreliable mappings problem is addressed in the proposed scheme in an efficient manner discussed in the

following sections. The proposed scheme (for architecture, see Figure 3) for the reconciliation of ontology mapping

has two main components: 1) Change History Log to maintain all of the ontology changes in a semantic structure

and 2) Reconciliation of Mappings in order to eliminate unreliable mappings from the existing mappings and to re-

establish the mappings for dynamic ontologies. However, before discussing the proposed solution, it is necessary to

highlight the nature and dynamics of ontology and ontology mappings during and after evolution, as described in the

following subsection.

2.1 Ontology and Ontology Mapping Dynamics

Organizational knowledgebase (in our case ontology) is flexible to accommodate rapid developments, new

contributions, data, modification in schema, and also policies for sharing data within an organization and outside [27,

28]. These modifications have direct impact on dependent data, applications, and established mappings [28, 29] and

make changes unreliable. The unreliable mappings are a result of the changed resources, which is why re-alignments

are needed. So far the reconciliation of ontology mappings for evolving ontologies has received little attention. The

authors in [29] have focused more on mapping evolution based on multiple versions of ontologies than changed

resources in the mapped ontologies.

Changes in ontology are broadly categorized into three categories [25, 29] that define the dynamics of ontology

and ontology during evolution.

1) Extension represents all the change operations that extend/add to the definitions of resources in ontology as

shown in the following axiom.

O1 O1 ⊔ {O1/.Change ≡ ∃ X { X | X ∈ Δ, X.resources.extension }}

2) Reduction represents all the change operations that reduce/delete from the definitions of resources in ontology as

shown in the following axiom.

O1 O1 ⊔ {O1/.Change ≡ ∃ X { X | X ∈ Δ, X.resources.reduction }}

3) Revision represents a change operation to concept(s) that revise/update definitions of resources in ontology as

shown in the following axiom.

O1 O1 ⊔ {O1/.Change ≡ ∃ X { X | X ∈ Δ, X.resources.revise = 1 Change }}

Resources will remain unchanged if they are not affected by any of the above change operations. These change

operations, as discussed above, will consequently affect the corresponding mappings. To overcome this issue,

established mappings also need to evolve/be reconciled for accommodating new changes. The mapping

reconciliation process is relatively simple as compared to ontology dynamics and is based on the concept of

differential tables [19] where two operations i.e., addition and deletion are required to represent any change and

these are described in the following axioms.

Addition:

New Mappings (Mnew) Mold + addedMappings ≡ ∃ X { X | X is mappings in O1 and O2}

Reconciled Mappings (M/) Mnew - Mold

Deletion:

New Mappings (Mnew) Mold + deletedMappings ≡ ∃ X { X | X is deleted mappings in O1 and O2}

Reconciled Mappings (M/) Mold - Mnew

The operation for modification of mappings in the reconciliation process is achieved by executing the operations

of Deletion and Addition in sequence. The mapping reconciliation operations highly depend on the dynamics of

ontology evolution and ontology evolution dynamics mainly specify which of the mappings dynamics/operations

will be activated for the reconciliation procedure. It might seem obvious that the Extension operation of ontology

evolution dynamics will activate the Addition operation of the mapping reconciliation process; however, it is not

necessarily true in all cases. The Extension operation can also activate the Deletion operation if the Extension

operation is introducing constraints in ontology which might restrict some resources from participating in mappings

which were established before. The detailed process for ontology dynamics and the reconciliation process is

presented in the following subsections.

2.2 Change History Log (CHL)

Ontology change management deals with the problem of deciding which modifications to perform in response to a

certain need for change. This generally keeps the changing ontology consistent and up to date while all of the

required changes are accurately tracked. Different changes have different effects on overall ontology, and most of

these changes are discussed in [39]. The number of changes, ranging from concepts to properties, can affect the

ontology. These changes need to be represented properly in order to correctly handle explicit and implicit change

requirements. This is why we have proposed a scheme for ontology change representation, which is referred to as

the Change History Ontology (CHO) [38] and is used to log the ontology change, reason for change, and the change

agents. CHO reuses the constructs from existing ontologies [42], ontology design patterns [22], the unified schema

developed for mappings in [55], and is strictly bounded by the principle of change in knowledge [1].

To satisfy the validity of a change, a change must have three basic properties i.e., Minimality, Success, and

Validity [1, 55] and their implementation in CHO is as follow. The Principle of Minimal Change enforces the idea

that the modifications that are supposed to be applied with ontology should be minimal. The applied changes are

kept at the atomic or minimal level in order to avoid any drastic change in ontology. To enforce the minimality of

change, the concept of the transaction ACID (atomicity, consistency, isolation, and durability) property is applied

[24]. The axiom given below enforces that at a particular time, there should be only one change that satisfies the

atomicity property of a change.

Change ≡ ∃ X { X | X ∈ Δ, X.resources.lock = exclusive}

To add in the atomicity of change, executing it in isolation is implemented using the following axiom.

Change ≡ ∃ X { X | X ∈ Δ, X = 1}

After having all the resources’ rights and executing them in isolation, the next constraint to be verified before

reflecting the results of these changes in dependent ontology is consistency. The constraints are to verify the

consistency of ontology and once the change is executed then the results will be completely reflected in the

dependent ontology. The axioms for consistency of ontology after a change are given in the Principle of Validity,

whereas the durability of change implementation in ontology is enforced using the following axiom.

Ontology ≡ {{Ontology − Change} ⊔ {Ontology + Change}} ⊓ {Ontology.consistent = true}

Based on the above discussion and propositions, the axiom given below is used to enforce the overall minimality of

the change. It represents the notion (constraint) for keeping the change at a minimal level i.e., one change at a time.

Change ≡ ∃ X { X | X ∈ Δ, X = 1 targetChange}

The Principle of Success observes and satisfies the priorities of alternate changes. Mostly, there are alternate

changes available for a given change request. So before a change is applied, the set of changes (alternate changes)

are tested for their final result. A change with minimal effects and complete execution is selected for the final

implementation. The axiom given below satisfies implementation of this principle.

Change ≡ ∃ X { X | X ∈ Δ, Δ = {C1,Cn}} where C = ChangeInstance

Change = 1 targetChange ⊓ min.(Change.Effects)

The Principle of Validity enforces that when a change is applied then the ontology must evolve to a new

consistent state. Any change that cannot satisfy the consistency constraint is not applied to the ontology. The

following axiom for the ACID property of consistency is formulated and applied.

Change ≡ ∃ X { X | X ∈ Δ, Ontology.consistent(change) = true}

This principle of validity is enforced using the following axiom based on the consistency validation borrowed from

the ACID property of transactions.

Change ≡ ∃ X { X | X ∈ Δ, Δ = {C1,Cn}} where C = ChangeInstance

Change = 1 targetChange ⊓ Ontology.consistent.(Change) = true

To enforce the change implementation principles on CHO, CHO is modeled to capture changes at the atomic

level and all the changes must be applied in isolation. Moreover, additional constructs are introduced in CHO and

some of the notable constructs are discussed in further detail below.

The core elements of CHO are the OntologyChange and ChangeSet classes. The OntologyChange class has a

sub-class called AtomicChange that represents all of the class, property, and individual level changes at the atomic

level, as expressed in Figure 1. The notion of ChangeSet in CHO is introduced from the Change Set Vocabulary

[61]. The rationale is that the individual changes are not performed in isolation and are usually part of a particular

session. The use of change set(s) is common in versioning systems such as CVS and SVN. A change set contains

information about the changes that are made during an ontology engineering session. ChangeSet bundles all of the

changes of a specific time interval in a coherent manner, as shown in Figure 1. The ChangeSet is responsible for

managing all of the ontology changes and arranges them in a time indexed fashion. This time indexing also

classifies the ChangeSet as both an Instant type and an Interval type. The Instant type ChangeSet has the ability to

hold only one change that occurred at some instant in time, whereas the Interval type ChangeSet holds the changes

that occurred within a defined time interval [38].

Figure 1. Participation of ontology resource as an ontology change of a particular time interval in a time-indexed manner. ChangeSet is a setting for

the changes that have occurred within a defined time interval [38].

Ontology development methodologies [33, 62] reuse the concepts and patterns from foundational ontologies [22].

These patterns are extremely useful in order to acquire, model, develop, and refine these types of ontologies. In

regard to CHO development, the fundamental ontology design patterns are used. The Participation Pattern consists

of a participant-in relation between the ontology resource and the change event and assumes a time index [22].

Time indexing is provided by the temporal location of the change within a defined time interval, whereas the

respective location within the ontology space is provided by the participating objects (see Figure 1). In previous

approaches [39, 42, 50, 54], ontology changes are stored sequentially without preserving their dependence or

interlinking with other changes. CHO uses ChangeSet for grouping and the time indexing of changes in a session in

order to preserve coherence of all of the ontology changes that have occurred. A ChangeSet is a setting that is used

for atomic changes. One ontology resource participates in a change event at a particular time interval. Figure 1

shows the diagrammatic depiction of this pattern. The listing of all of the ontology changes is maintained in the

CHL, which is constructed in such a way that it maintains all of the ontology changes in conformance to the CHO.

Corresponding to the CRUD interfaces in the databases (excluding read), three categories are used in the CHO to

represent operations or change types. The change types include Create (such as ClassAddition, PropertyAddition,

and IndividualAddition), Update (such as ClassRenaming, PropertyRenaming, and IndividualRenaming), and Delete

ChangeSet

Resource OntologyChange TimeInterval

Ontology

+setting-for +setting-for +setting-for

+defined-in

+temporal-location +participant-in

1 1…*

1

(such as ClassDeletion, PropertyDeletion, and IndividualDeletion). As stated previously, there are three categories

that represent different components of the ontology that are subject to change. These categories are ClassChange,

PropertyChange, and IndividualChange [21, 38]. Based on these categories, we derive instances of class

OntologyChange, which are represented with the symbol Δ, by using the following axioms:

R∆ ≡ ∃ ChangeTarget.(Class ⊔ Property ⊔ Individual ⊔ Ontology)

∆ ≡ R∆ ⊓ ∀changeType.(Create ⊔ Update ⊔ Delete) ⊓ ∃changeAgent.(Person ⊔ SoftwareAgent) ⊓ =1changeReason

For instance, the following statement (see Figure 2) represents the class addition scenario by adding the same class

for the range addition scenario of a property. The statement also includes the corresponding ChangeSet instance

information.

log:Interval

a cho:ChangeSetType ;

cho:hasChangeSetTypeValue "Interval" .

log:ChangePerson_Instance_1982

a cho:ChangePerson ;

cho:hasAuthorName "Administrator" .

log:ChangeSet_Instance_2474557

a cho:ChangeSet ;

cho:hasChangeAgent log:ChangePerson_Instance_1982 ;

cho:hasChangeSetType log:Interval ;

cho:hasChangeBeginTime 00:00:46 ;

cho:hasChangeEndTime 00:03:21 ;

cho:hasChangeReason "User Request" ;

cho:hasOntology http://www.uclab.khu.ac.kr/human.owl .

log:ClassAddition_Instance_1224702057078

a cho:ClassAddition ;

cho:hasChangedTarget human:NCI_C12801 ;

cho:hasTimeStamp 1224702057078 ;

cho:isSubClassOf owl:Thing ;

cho:isPartOf log:ChangeSet_Instance_2474557 .

log:RangeAddition_Instance_1224702057431

a cho:RangeAddition ;

cho:hasChangedTarget human:UNDEFINED_part_of ;

cho:hasPropertyType owl:ObjectProperty ;

cho:hasTargetRange human: NCI_C12801 ;

cho:hasTimeStamp 1224702057431 ;

cho:isPartOf log:ChangeSet_Instance_2474557 .

Figure 2. Changes in the Human (nci_anatomy) ontology represented using the N3 notation and stored in the Change History Log (CHL)

In Figure 2, the log is prefix for CHL, cho for CHO, and human for Human (nci_anatomy) ontology. The above

statement depicts instances of ClassAddition and RangeAddition classes, which are defined as a sub-class of

ClassChange and PropertyChange, respectively, and are also elaborated in more detail below.

ClassAddition ⊑ ClassChange ⊓ ∃changeType.Create

RangeAddition ⊑ PropertyChange ⊓ ∃changeType.Update

With reference to relational databases, our methodology includes logging techniques that allow for the ability to

persistently store these types of changes. This helps in performing the undo/redo, ontology recovery, query

reformulation, temporal traceability of ontology changes, and reconciliation of ontology mappings functions as

needed. The changes are preserved in a time-indexed manner using both the CHL and the schema provided by the

CHO [38]. When a request is made for any of the above mentioned purposes, the CHL, which contains all of the

changes that were made, is accessed to make the requested changes. Each entry in the log is an instance of either the

ChangeSet or OntologyChange class from the CHO. The log also preserves the provenance information with regard

to the change, such as who made the changes and when and also why these changes were made.

Figure 3. The overall framework for reconciliation of mappings in dynamic and evolving web ontologies and the process of ontology change storage

and the mapping reconciliation process.

2.3 Mapping Reconciliation Procedure

As discussed above, there are different algorithms available to establish mappings between ontologies [8, 32, 44, 49,

63]. The existing systems are able to re-establish the mappings between dynamic ontologies after their evolution;

however, these systems start their mapping re-establishment process from scratch, which is a time consuming

operation. Our contribution is to use the change entries of the ontology (after the evolution) that are stored in the

CHL [38] to guide the reconciliation of the mappings between ontologies, which not only helps to eliminate stale

mappings, but also takes less time to reconcile mappings in dynamic and evolving ontologies. In this approach, we

only concentrate on the resources that have changed between the evolved ontologies. The approach is most suitable

for large ontologies that have hundreds or thousands of resources, such as when reconciling mappings (after change)

among Brinkman, GTT, GEMET, NALT, Google Classification, Wiki Classification, ACM Classification Hierarchy,

and MSC Classification Hierarchy. The larger the size of the ontology the better, as it becomes more time efficient

than any of the algorithms discussed above. The detailed procedure is provided below.

Recreating Mappings: Consider the scenario given in Figure 3, where two ontologies are mapped and exchange

information based on the established mappings. If one or both of the ontologies change (evolve) to another state

(see Figure 3), then the existing mappings are of no use anymore, as they are not reliable and also become stale in

this situation. This is why the mappings between these two ontologies need to evolve and why the evolving

ontologies need to be up to date. In order to elaborate this concept further, we use two different cases.

Algorithm 1. Mapping reconciliation algorithm for ontology mapping using ontology changes stored in the Change

History Log (CHL)

Input: Ontologies O1 and O2 for mapping reconciliation, Ontology change information (i.e., ∆1 and ∆2) from CHL of both

ontologies, i.e., ∆1 ∈ O1 and ∆2 ∈ O2.

Output: Set of mappings for the changed resources is then updated in the original mappings file.

A resource matching threshold is defined as ψ = 0.70;

/* Check for change of resources in CHL of both mapped ontologies and read the changes in ∆ */

if ∃∆ ⊓ ∆.O1.CHL.NewChange then

 /* Read the changes in ∆1 */

 ∆1 ← {x ∣ < CHL, x > Change}

endif

if ∃∆ ⊓ ∆.O2.CHL.NewChange then

 /* Read the changes in ∆2 */

 ∆2 ← {x ∣ < CHL, x > Change}

endif

/* Delete all the mappings from the original mapping file that are subject to change because of the change in

 the mapped resources. This method uses both ∆1 and ∆2 as optional parameters and is used if a change

 exists in the CHL and is retrieved in ∆ */

Execute.delete(Mappings, [∆1], [∆2]))

/* Start mapping reconciliation procedure by calculating the semantic affinity */

if ∃∆1.Change ⊓ ∃∆2.Change then

 /* Calculate semantic affinity using changed resources of both the ontologies */

 R-Map [][] ← SemanticAffinity(C1∈ O1, ∆1, C2∈ O2, ∆2 , ψ)

else-if ∃∆1.Change ⊔ ∃∆2.Change then

 /* Calculate semantic affinity using changed resources of one changed ontology represented as ∆/ */

 R-Map [][] ← SemanticAffinity(C1∈ O1, C2∈ O2, ∆/, ψ)

endif

/* Update the original mapping file with the reconciled mappings for the changed resources */

 Execute.update(Mappings, R-Map[][])

Case 1. If one of the ontologies evolves from one state to another, then its mapping with other ontologies will

become unreliable as there will be a definite change in the resources that are mapped with the other

ontologies. This is the reason why the mappings should be reconciled. We propose the use of the CHL

entries to identify the changed resources in the evolved ontology instead of completely recreating the

mapping process from scratch, which is a time consuming process. Only the changed resources in the

mapping reconciliation process are used to map the changes with the other ontology, and we simply updated

the previous mappings with the new ones while simultaneously removing the stale mapping entries. In this

case, we only need to alter the method for calculating the Semantic Affinity (SA) by incorporating the

change information from the CHL. The modified method, including parameters, is given below:

SA(C1, C2, ∆2, ψ) C1 Resource from Ontology O1

 C2 Resource from changed Ontology O2

 ∆2 Change information from CHL of Ontology O2

 Ψ User defined threshold for resource match

Case 2. Consider the second case where both of the ontologies have evolved from one consistent state to another as

demonstrated in Figure 3. This is also the worst case scenario in terms of execution time for mapping

reconciliation. In this case, the mapping also needs to evolve in order to accommodate the mappings for the

new resources that have changed and to eliminate the stale connections from the already established

mappings. Again, we do not need to completely recreate the mappings between both ontologies, as required

by the existing systems, which is a time and resource consuming process. We instead reconcile the

mappings for the changed resources. As shown in Figure 3, both ontologies, O1 and O2, have evolved. In

order to reconcile the mappings between the evolved ontologies and to remove the stale mappings in a time

efficient manner, we use the CHL entries for both ontologies to identify all of the changed resources. Based

on identified changes, we then reconcile the mappings for these changed resources, update the old mappings,

and remove the unreliable (stale) mappings. This is not only a time efficient technique, but it also eliminates

the stale mappings that need to be updated in order for reliable communication and for the exchange of

information between systems and/or services.

The inputs for this module are also shown in Figure 3 and consist of the evolved ontologies, O1 and O2,

and the CHL entries for both ontologies, that is, ∆1 and ∆2 for ontology O1 and ontology O2, respectively.

The previous mappings between these two ontologies are also updated in the execution of the proposed

algorithm (see Algorithm-1). The SA is calculated by incorporating the change information from the CHL,

and thus the modified method including all of the parameters is as follows:

SA(C1, ∆1, C2, ∆2, ψ) C1 Resource from ontology O1

 ∆1 Change information from CHL of Ontology O1

 C2 Resource from Ontology O2

 ∆2 Change information from CHL of Ontology O2

 Ψ User defined threshold for resource match

The variables ∆1 and ∆2 are the changes of both the ontologies that are contained in the CHL. In regard to

calculating the SA, these changes are required and are extracted from the CHL using the SPARQL query

given below. To determine the latest changes, the ChangeSet instances are extracted and sorted in

descending order of timestamp as defined in the CHO, and the top most ChangeSet instance is then selected.

Afterward, all of the changes corresponding to the selected ChangeSet instance are retrieved from the CHL.

Resource: SELECT ?changes ?timeStamp WHERE {?changes docLog:isPartOf changeSetInstance . ?changes

docLog:hasTimeStamp ?timeStamp } ORDER BY DESC(?timeStamp)

∆x: SELECT ?changedTarget ?isSubClassOf WHERE {Resource docLog:hasChangedTarget ?changedTarget . Resource

docLog:isSubClassOf ?isSubClassOf }

After reconciliation, the stale parts of the mappings are removed. The mappings are then updated, as shown in

Figure 3 in the color blue. This process not only eliminates the staleness from the mappings, but it is also more time

efficient (as it focuses on the changed resource), making it more suitable for systems and services that deal in

information exchange.

3.0 Implementation and Results

In this section, we present in detail the results that were achieved with the proposed extensions to those obtained

using the existing mapping systems. The following experimental setup and data sets were used to conduct

experiments and tests for to verify our proposed hypothesis that only considering changed resources in ontologies

will reduce the time required for the mapping regeneration process, overcome the mapping staleness, and maintain

the same level of accuracy.

3.1 Preliminaries

In this subsection, we explain the experimental setup established to compare in detail the results that were achieved

with the proposed extensions to those obtained using the existing mapping systems5, i.e., Falcon [32], H-Match [8],

FOAM [18], Lily [63], AgreementMaker [12, 13], and Prompt [49]. Comparing the results obtained from the

proposed extensions against those of the existing systems verifies that the amount of time required for the

reconciliation of the mappings using the proposed extensions is far less than when using the existing systems. The

experiments in the present study were all conducted using a machine that had a 2.66 GH Quad Core processor and 4

GB of primary memory.

3.1.1 Data Sets

The data sets used in these experiments were all available online (http://oaei.ontologymatching.org/), and the

ontologies were derived from Mouse, Human, Brinkman, GTT, GEMET, and NALT. Other data sets such as Health

and Food ontology
6
, People+Pets ontology

7
, ACM and Springer ontology

8
, HL7 Classes ontology

9
, and openEHR

Classes ontology
10

 have also been used to make detailed comparisons among similar systems.

For the experiments three different categories i.e., relevant, overlapping, and diverse ontologies were considered

which can provide a more realistic results for all cases instead of only relevant ontologies. From this perspective,

Human Anatomy Ontology (from the National Cancer Institute (NCI)) and Mouse Anatomy Ontology (from Mouse

Genome Informatics (MGI)) included numerous relevant constructs from both domains. Similarly, Health Ontology,

Food Ontology, and People+Pets Ontology also shared relevant constructs from their respective domains. ACM

Ontology and Springer Ontology shared overlapping information from their respective publications application

domains, whereas HL7 Classes Ontology and openEHR Classes Ontology were sharing overlapping information

from the domain of Hospital Information Management System and healthcare. On the other hand Brinkman

Ontology, GTT Ontology, GEMET Ontology, and NALT Ontology were diverse in nature and had focus on

biomedical investigation, glucose tests details, multilingual environment, and national agricultural thesaurus,

respectively. The mapping results for all the above mentioned ontologies (except Health, Food, and People+Pets)

were available online for verification; however, the focus of the proposed approach was to have immediate tests of

5 The mapping systems selected for use and comparison in this paper are those which showed the best performance in the OAEI’05, OAEI’07, and OAEI’09.
6 http://aims.fao.org/
7 http://www.atl.lmco.com/projects/ontology/
8 http://mapekus.fiit.stuba.sk/?page=ontologies
9 http://web.science.mq.edu.au/~borgun/Software.html
10 http://trajano.us.es/~isabel/EHR/

the proposed extensions results against existing systems results, as explained in Section 3.2, Section 3.3, Section 3.4,

and Section 3.5 with details.

3.1.2 Experimental Setup

The experiments were carried out for both cases as explained in Section 3.2 (i.e., Mapping Reconciliation

Procedure). In all of the experiments, a constant similarity value of 0.70 was used as a matching threshold. The

numbers of iterations for most of the systems were kept as the default value, with the exception of FOAM [18],

which was set to seven iterations per execution; however, this value did not affect the results as these systems were

not compared with one another with regard to accuracy. These experiments are by no means a comparison of

existing systems, but are in fact the comparison of each individual system with our proposed extensions to that

individual system. The experiments were conducted in two modes, which consisted of either complex or atomic

level changes [37]. Complex change is a change that consists of several atomic level changes, for example a deletion

of a super class will result in a complex change including the deletion of all of the subclasses of that super class.

Atomic change is a simple change, for example when renaming a resource. In these experiments, the changes that

were made were mostly the introduction of new resources in the domain ontologies. Figure 4 illustrates the

limitations of the existing systems in that they do not focus on mapping evolution or its effects. The existing systems

need more time to recreate the mappings with both complex and atomic changes. A total of 25 complex changes

were introduced in each ontology version that was used in the experiments shown in Figure 4-a, whereas the atomic

changes for each ontology version used in Figure 4-b are provided in Table 2.

3.2 Comparison Using Complex Changes

In order to test the existing systems with our proposed extensions, a total of 25 random changes, all of which were

complex, were introduced to the different ontologies used in our experiments. These changes caused the ontologies

(listed in Table 1) to evolve from one state to another. In these experiments, the ontologies are considered in full,

including their structures and instances. As discussed above, these 25 complex changes were made to every version

of the ontologies, which had an effect on both the structure and individuals. The existing algorithms (i.e., Falcon and

H-Match) and proposed extensions to these algorithms were tested for both cases.

Figure 4. 4-a. The mapping and re-establishment of the mapping results with respect to time for the Mouse and Human ontologies using

Falcon [32], H-Match [8], Lily [63], and TaxoMap [49] with complex changes. 4-b. The mapping and recreation of the mapping results with

respect to time for the Mouse and Human ontologies using FOAM [18], Falcon [32], Lily [63], AgreementMaker [13], and Prompt [49] with

atomic changes.

Case 1. In this scenario, only one of the ontologies evolved from one state to another, while the second ontology

remained unchanged. Falcon and H-Match were first used to perform the initial mapping between the ontologies

and were then used to re-establish the mappings using the changes in the single ontology. Afterward, the

proposed extensions were applied for the changed ontologies to perform mapping reconciliation. As discussed

earlier, the existing algorithms start from scratch and thus require more time than the proposed mapping process,

as shown in Table 1. Our extension to the existing algorithms when using the CHL [38] only considers the

changed resources and reconciles the mappings for only the changed resources. The proposed extensions (see

Table 1) performed better than the existing systems. The amount of computational time (shown in Table 1),

which is reflected in the columns titled Extended Falcon Re-Mapping Time (7
th
) and Extended H-Match Re-

Mapping Time (8
th
) for mapping reconciliation, is better when compared to the columns Falcon Re-Mapping

Time (5
th
) and H-Match Re-Mapping Time (6

th
). The results show that the extensions using the CHL drastically

reduced the computational time for the reconciliation of mappings in dynamic ontologies.

Table 1. Time analysis of the original Falcon [32] and H-Match [8] with our extensions to Falcon and H-Match using the Change History Log

Onto1 Onto

2

Falcon Map

ping Time

H-Match Ma

pping Time

Falcon Re-

Mapping Ti

me

H-Match Re-

Mapping Tim

e

Extended Falcon

Re-Mapping Tim

e

Extended H-Mat

ch Re-Mapping T

ime
Mouse Huma

n

8.89 minutes 10.76 minutes 9.87 minutes 12.35 minutes 1.08 minutes 1.42 minutes

Brinkma

n

GTT 32.40 minutes 39.13 minutes 34.63 minutes 41.55 minutes 3.11 minutes 2.78 minutes

GEMET NALT 51.33 minutes 1.12 hours 53.71 minutes 1.17 hours 5.36 minutes 7.31 minutes

a b

Case 2. In this scenario, both ontologies evolved from one state to another. The Falcon and H-Match were first used

for the initial mappings between the ontologies and then for the re-establishment of the mappings to reflect the

changes in both ontologies. The algorithms were tested again to recreate the mappings and then to implement

with the proposed extensions. The existing algorithms start from scratch and thus they take more time than the

previous test (shown in Table 2) when compared against our extensions so that only consider the changed

resources and reconcile the mappings accordingly. Our proposed technique helped to save a large amount of

computational time (as shown in Table 2) by comparing columns 7 and 8 for mapping reconciliation to columns

5 and 6. The results in both Table 1 and Table 2 show that extensions using the CHL reduce the computational

time to reconcile the mappings for both cases in dynamic web ontologies.

Table 2. Time analysis of the original Falcon [32] and H-Match [8] with our extensions to Falcon and H-Match using the Change History Log

Onto1 Onto

2

Falcon Mapping

Time

H-Match Ma

pping Time

Falcon Re-M

apping Time

H-Match Re-

Mapping Tim

e

Extended Falco

n Re-Mapping

Time

Extended H-Ma

tch Re-Mapping

 Time
Mouse Huma

n

8.89 minutes 10.76 minutes 9.87 minutes 12.35 minutes 2.36 minutes 2.96 minutes

Brinkma

n

GTT 32.40 minutes 39.13 minutes 34.63 minutes 41.55 minutes 5.06 minutes 4.88 minutes

GEMET NALT 51.33 minutes 1.12 hours 53.71 minutes 1.17 hours 9.48 minutes 12.39 minutes

3.3 Comparison Using Atomic Changes

This section describes the experimental results when the data sets that had changes at the atomic level were tested

with the existing systems and our proposed extensions. For these experiments, only the structures of the ontologies

were considered for the mapping procedures, and no individuals (instances) were used. Table 3 shows the different

versions of the data sets and the number of atomic level changes between these versions. The existing systems,

which were Falcon [32], FOAM [18], Lily [63], AgreementMaker [13], and Prompt [49], and our proposed

extensions were tested on these data sets for the following two cases.

Table 3. Ontology versions and the number of atomic changes applied to one version that transforms an ontology to another version. All of the

ontologies are listed in the 1st row. Numeric values are the number of changes in the ontology when the current version is compared against the

previous version.

Ontology Versions Huma

n

Mouse Health Food People+P

et

ACM

Ontology

Springer

Ontology

Version1 Origina

l

Original Origina

l

Origina

l

Original Original Original

Version2 = Version1 + No of

Changes

283 166 169 122 120 109 176

Version3 = Version2 + No of

Changes

112 201 153 161 172 133 114

Version4 = Version3 + No of

Changes

123 198 145 114 109 141 106

Case 1. In the first case, only one of the mapped ontologies evolved from one state to another, whereas the second

ontology remained unchanged. The existing systems were used to initially map the ontologies and then to

recreate the mappings after the changes in the ontology. Afterward, the proposed extensions were applied to

reconcile the mapping between the changed ontologies. The existing systems and proposed extensions were all

tested in detail using the data sets provided in Table 3, and the results for Case 1 are shown in Figure 5. The

execution times of these systems vary (see Figure 5) due to the different matching schemes that were used in

their implementation. Execution times shown in Figure 5 are all in minutes and fractions of minutes.

Each graph in Figure 5 shows the results of the existing systems and the proposed extensions on a particular

data set with its different versions. Each graph in Figure 5 consists of five pairs, which create a total of ten bars.

Each alternative pair is the result of comparing the proposed system against the existing system. The 1
st
 bar of

each pair shows the execution time of the existing system on each version (differentiated using colors) of the

ontology, whereas the 2
nd

 bar of each pair shows the execution time for our proposed extensions for the

different versions of the ontology. The percentage of the colored segments occupying each bar represents the

percentage of time consumed for that particular execution of mapping and remapping procedure against the

others, whereas the value inside represents the exact amount of time in minutes consumed. One very obvious

pattern that is visible in each graph in Figure 5 is that the execution time of the proposed extensions on the

initial versions of the ontologies is always the same or slightly greater (max by 24 seconds) than those of the

existing systems. If the ontologies are matched for the first time, as in this case, the proposed system carries out

the complete mapping procedure in addition to looking for the changes in the CHL and existing mappings. The

detailed experimental results shown in Figure 5 validate that our proposed extensions drastically reduce the

time required for reconciling ontology mappings for this case.

Figure 5. Detailed comparison of the proposed extensions against Falcon [32], FOAM [18], Lily [63], AgreementMaker [13],

and Prompt [49] using a combination of seven different data sets. This figure shows the results for Case 1. Each graph shows

the results of the existing systems compared to the proposed extensions. Each graph consists of five pairs, yielding ten bars in

total. Alternative pairs are the results of the comparison of the proposed system against the existing system. The 1st bar of

each pair shows the execution time (y-axis shows the execution time) of the existing systems, while the 2nd bar shows the

execution time for the proposed extensions. Each packet of every bar (stacked column) in the graphs of different colors shows

the execution time consumed by the existing systems and the proposed extensions reconcile mappings between various

versions of the ontology. In these graphs Hu=Human, Mo=Mouse, Fo=Food, He=Health, ACM=ACM, Sp=Springer, and

PP=People+Pets are used as abbreviations for the ontology names where V represents the version number of the ontology.

For example, HuV2 represents the second version of the Human ontology.

a b

c d

e f

Figure 6. Detailed comparison of the proposed extensions against Falcon [32], FOAM [18], Lily [63], AgreementMaker [13],

and Prompt [49] using a combination of seven different data sets. This figure shows the results for Case 2. Each graph shows

the results of the existing systems compared to the proposed extensions. Each graph consists of five pairs, yielding ten bars in

total. Each alternative pair is the result of comparing the proposed system against the existing system. The 1st bar of each

pair shows the execution time (y-axis shows the execution time) of the existing systems, while the 2nd bar shows the execution

time for the proposed extensions. Each packet of every bar (stacked column) in the graphs with different colors shows the

execution time consumed by the existing systems and the proposed extensions to reconcile mappings between various versions

of the ontology. In these graphs Hu=Human, Mo=Mouse, Fo=Food, He=Health, ACM=ACM, Sp=Springer, and

PP=People+Pets are used as abbreviations for the ontology names where V represents the version number of the ontology.

For example, HuV2 represents the second version of the Human ontology.

a b

c d

e f

Case 2. As explained earlier, in this case, both ontologies evolved from one state to another. Case 2 is also the worst

case for our proposed system as the mapping reconciliation procedure will look for changes in both ontologies

and will also execute the mapping reconciliation procedure for both ontologies. The existing systems were first

used to check for the initial mappings between the ontologies and then used to recreate the mapping process in

order to account for the changes in both ontologies. For mapping reconciliation, the existing systems with the

proposed extensions were then tested using the evolved ontologies. Both the existing systems and the proposed

extensions were tested in detail using the data sets provided in Table 3 with all of their changes. The results of

the detailed experiments for Case 2 are shown in Figure 6. Execution times are also shown in Figure 6 and are

all represented by minutes and fractions of minutes.

Each graph of Figure 6 represents the results of the existing systems and the proposed extensions on a

particular data set with its different versions. Each graph of Figure 6 consists of five pairs, which yield ten bars

in total. Each alternative pair is the result of comparing the proposed system against the existing system. The

1
st
 bar of each pair shows the execution time of the existing system on each version (differentiated using colors)

of the ontology, whereas the 2
nd

 bar of each pair shows the execution time of our proposed extensions for

different versions of the ontology, which is the same as Case 1. The percentage of the colored segments

occupying each bar represents the percentage of time consumed for that particular execution of the mapping

and remapping procedure compared with the other one in the pair, whereas the numeric value inside represents

the exact amount of time in minutes consumed in each experiment. The detailed experimental results shown in

Figure 6 validated our hypothesis. This facilitates the process of interoperability and information exchange

between web services. Thus, the services are not suspended for longer durations due to evolving ontologies.

3.4 Effects of Change Type

The time it takes to reconcile the mappings between ontologies depends on the types of changes that are made. A

single change may have a cascading effect on the existing resources or may result in several induced changes [21].

Our approach depends on the number of these changes. As the number of changes in an ontology increases, the

mapping time will increase when using our approach. However, it is important to note that this mapping time is still

less than those of the original algorithms. The cascading effects and induced changes are due to the changes that

occur at higher levels of hierarchy and are less frequent once a domain ontology becomes more mature [21 and 27].

One such case is also visible in Figure 7 (x-axis = no of tests, y-axis = minutes) in which the third bar can be

compared between Figure 7-a and Figure 7-b. Figure 7-a shows the results for complex changes, whereas Figure 7-b

shows the results for atomic changes.

Figure 7.-a. The mapping and recreation of the mapping results for the Mouse and Human ontologies with complex changes. The

first bar combination is the result of the original Falcon [32] and H-Match [8], while the remaining bar combinations are the

results of our proposed extension. The 3rd bar shows the time increase due to the cascading effects of changes. 7-b. The mapping

and recreation of mapping results for the Mouse and Human ontologies with atomic changes. The first bar combination is the

result of the original Falcon [32], FOAM [18], Lily [63], AgreementMaker [13], and Prompt [49], while the remaining bar

combinations are the results of our proposed extension. The 3rd bar combination shows the time increase due to the cascading

effects of changes. The same effects are also visible in the 3rd row of the tabular view of the results, which can be seen here by

comparing it against the 2nd and 4th rows.

The first bars in Figure 7-a and Figure 7-b are the original times for all of the algorithms to establish the mappings

between the Human and Mouse ontologies, whereas the remaining bars represent the amount of time for mapping

reconciliation when using our proposed extensions using the CHL. In Figure 7-a, a set of 25 random changes

(complex) are introduced to each version of the ontology. In Figure 7-b, the changes (atomic) listed in Table 3 are

introduced to each version of the ontology. In the 3
rd

 bar combination of Figures 7-a and 7-b, the cascading effects

cause the reconciliation procedure to take longer than the other reconciliation tests with the proposed extensions.

Nevertheless, even with the cascading effects and induced changes, our proposed approach requires less mapping

computational time than the original algorithms.

3.5 Reconciled Mapping Accuracy

Although reconciled mapping accuracy is not the focus of our research, the accuracy of generated mappings is an

a b

important issue. The proposed extensions reduce the amount of time required for mapping reconciliation; however,

it is also important to test the effects of the proposed method on the accuracy of reconciled mappings. In this section,

the detailed results related to the reconciled mapping accuracy are provided (see Table 4) based on atomic level

changes. The details of these atomic changes are given in Table 3. The results in Table 4 show the percentage

(rounded percentages are given) of the overall mappings found after the reconciliation procedure. The mappings

found by the original mapping systems are considered as the total possible mappings, whereas the mappings found

with the proposed extensions are compared against the results of the original mapping systems. The details of the

data sets and the mapping systems that have been used for the experiments are also provided in Table 4. During the

logging process, every ontology change is logged in the CHL, and this also results in establishing/reconciling

Table 4. The mapping accuracy results of the proposed extensions to the mapping systems against the original mapping systems. The results in this

table are provided for Human, Mouse, Health, Food, ACM, and Springer ontologies, and FOAM [18], Falcon [32], AgreementMaker [13], and Lily

[63] were used to represent the original mapping systems. The results do not show that the proposed extensions achieved 100% mapping accuracy;

however, these results do show that the percentage of results (accuracy) achieved by the proposed extensions is higher compared to the original

systems that require recreation of the complete mappings from scratch.

Ontology 1 Ontology 2 Changes Ext-FOAM Ext-

Falcon

Ext-

AgrMaker

Ext-Lily

Human V1 Mouse V1 Original 100 % 100 % 100 % 100 %

Human V2 Mouse V2 283 vs. 116 96.50 % 96.50 % 96.00 % 96.00 %

Human V3 Mouse V3 112 vs. 201 93.50 % 95.00 % 94.00 % 95.00 %

Human V4 Mouse V4 123 vs. 198 97.00 % 97.00 % 97.00 % 97.00 %

Human V1 Health V1 Original 100 % 100 % 100 % 100 %

Human V2 Health V2 283 vs. 169 97.00 % 98.50 % 98.00 % 99.00 %

Human V3 Health V3 112 vs. 153 96.50 % 96.00 % 97.00 % 97.00 %

Human V4 Health V4 123 vs. 145 99.00 % 100 % 100 % 100 %

Health V1 Food V1 Original 100 % 100 % 100 % 100 %

Health V2 Food V2 169 vs. 122 98.50 % 100 % 100 % 100 %

Health V3 Food V3 153 vs. 161 97.00 % 98.50 % 99.00 % 99.00 %

Health V4 Food V4 145 vs. 114 98.50 % 99.50 99.00 % 100 %

ACM V1 Springer V1 Original 100 % 100 % 100 % 100 %

ACM V Springer V2 109 vs. 176 99.00 % 100 % 100 % 100 %

ACM V Springer V3 133 vs. 114 98.50 % 99.50 % 99.00 % 99.50

ACM V Springer V4 141 vs. 106 99.50 % 100 % 100 % 100 %

redundant mappings (that already exist in the original mappings), which are then removed from the final list of

reconciled mappings. The formula used to calculate the percentage is simple and is provided below:

Percentage accuracy of reconciled mappings = (No of reconciled mappings / No of original system mappings) * 100

Most of the mapping systems that have been developed mainly focus on the accuracy of the mappings, which is

more critical when the services or information systems deal with information related to the healthcare domain. To

investigate the accuracy of the reconciled mappings, the healthcare domain ontologies, i.e., HL7 Classes ontology

and openEHR Classes ontology, have been used to compare the two different versions for mapping and mapping

reconciliation purposes. These ontologies have been tested using FOAM [18], Falcon [32], AgreementMaker [13],

and Lily [63], and their results were compared with results from the proposed extensions to these systems (see Table

5). The changes used in these tests are also atomic changes, and the numbers of changes introduced in the different

versions of the ontology are listed in Table 5. Similar to Table 4, Table 5 also shows that there are fewer mappings

after the reconciliation procedure than those that were identified by the original systems. In addition, these tools

were found to have some deficiencies in finding exact matches with regard to the concepts of the ontology. For

instance, the HL7 Classes ontology used SNOMED CT (O1) as a base line that was then matched with another HL7

Classes ontology using HL7 RIM (O2) as its base model, and the Event concept from O2 is mapped with the Event

concept of O1. However, both of them had different semantics. Similarly, the Event concept from O2 has the same

semantics as the Clinical_Findings in O1; however, they are not matched when using the existing matching systems.

Table 5. Mapping accuracy results of the proposed extensions to the mapping systems against the original mapping systems using HL7 Classes

ontology and openEHR Classes ontology. In these tests, only two versions of the said ontologies are used. FOAM [18], Falcon [32], AgreementMaker

[13], and Lily [63] were used to represent the existing mapping process.

Mapping

Systems

Ontology 1 Ontology 2 Ontology

Changes

Mapping

Time

Number of

Mappings

Found

FOAM HL7 V1 openEHR V1 Original 18.23 minutes 16

Ext-FOAM HL7 V1 openEHR V1 Original 18.57 minutes 16

FOAM HL7 V2 openEHR V2 103 vs. 166 19.30 minutes 19

Ext-FOAM HL7 V2 openEHR V2 103 vs. 166 4.03 minutes 17

Falcon HL7 V1 openEHR V1 Original 0.58 minutes 18

Ext- Falcon HL7 V1 openEHR V1 Original 1.01 minutes 18

Falcon HL7 V2 openEHR V2 103 vs. 166 1.18 minutes 20

Ext- Falcon HL7 V2 openEHR V2 103 vs. 166 0.26 minutes 19

AgrMaker HL7 V1 openEHR V1 Original 1.17 minutes 18

Ext-AgrMaker HL7 V1 openEHR V1 Original 1.24 minutes 18

AgrMaker HL7 V2 openEHR V2 103 vs. 166 1.49 minutes 20

Ext-AgrMaker HL7 V2 openEHR V2 103 vs. 166 0.41 minutes 18

Lily HL7 V1 openEHR V1 Original 1.45 minutes 17

Ext-Lily HL7 V1 openEHR V1 Original 1.49 minutes 17

Lily HL7 V2 openEHR V2 103 vs. 166 2.09 minutes 19

Ext-Lily HL7 V2 openEHR V2 103 vs. 166 0.49 minutes 18

To overcome the decrease in accuracy of the reconciled mappings, two points have been addressed. The first

point is that there has been an increase in the level of information with the changes. With every class change (except

class deletion), extra information is provided during the reconciliation procedure, such as when dealing with a super

class and its sub classes. Similarly, additional domain and range information is provided for every change in

property (excluding property deletion). Improvements were found in the accuracy of reconciled mappings; however,

this additional information also increased the time it took to complete the mapping reconciliation process. The

second point to consider is the semantic conflicts that cannot be resolved without expert intervention as discussed

above, such as the example regarding the HL7 Classes ontology. Currently, the focus is on identifying the missing

mappings and the reasons for these missing mappings, which will also help to optimize the proposed system with

regard to mapping accuracy.

Figure 8. Space consumption analysis of Falcon [52], H-Match [15], Lily [63], and TaxoMap [49] against the systems with the proposed extensions

using CHL during the mapping reconciliation procedure. Memory size is represented in KBs, and the memory usage values are defined as the peak

memory usage values recorded during the execution of the respective systems.

3.6 Memory Usage

In addition to time efficiency, the proposed extensions are also shown to be space efficient. After the mapping

reconciliation procedure, when compared against the existing systems, at any particular instance of time, the

ontology occurs from one side, and the changes occur from another side. The changes are far smaller in size than

those of the original ontology and this is why we compared the proposed system’s runtime memory usage with that

of the existing systems. The results (see Figure 8) show that the memory consumption of the proposed system is less

than that of the existing systems. Moreover, as the proposed system needs less time than the existing systems to

process, memory consumption also occurs for a shorter interval of time with the proposed system. Figure 8 shows

the results of the memory consumption of the proposed extensions to the existing systems against the traditional

approach of the existing systems. The original and changed versions of the Human and Mouse ontologies shown in

Table 3 were used to demonstrate the effect of the proposed system on memory usage.

4.0 Related Work

The progressive emergence of information and communication technology has enabled the continuous flow and

storage of information in diverse (i.e., heterogeneous) nature. This information is sometimes overlapping or to some

extent connected and needs to be integrated. The problem is how to overcome the syntactic and semantic

heterogeneity of the information and merge/integrate it [26, 58]. The scheme of matching and mapping is used to

overcome this issue of heterogeneity. To formalize the process ontology based matching, schemes are proposed that

provide basic vocabulary to resolve the syntactic and semantic heterogeneities [20, 21, 26, 58]. Ontology is

currently being used by convergent technologies, such as Context-aware Search Engines [36], Software Agents [9,

35], Data Integration [23, 64], Semantic Grid [53], Cloud Computing [7, 60], and Semantic Web Services [45, 51].

Many research groups are working on ontology matching/mapping and have developed different systems that

facilitate interoperability between collaborative convergent technologies which demonstrate that research in this

area is active. This section lists the existing systems in the field of ontology and schema matching and the systems

extended in the proposed approach to achieve the overall objectives. From this prospective, Falcon [32] is an overall

infrastructure for Semantic Web ontology learning, matching, mapping, and aligning and is extensively used by the

semantic web community for applications, such as providing well designed technologies for finding, aligning, and

learning ontologies and ultimately for knowledge discovery. Falcon-AO is one of the prominent components of

Falcon and is an automatic ontology matching component that enables interoperability among Semantic Web

applications by using related ontologies. Falcon-AO is one of the most practical and popular tools for web ontology

matching and mappings that are expressed in RDF(S) and/or OWL. This tool consists of five main components: 1)

Repository, 2) Model Pool, 3) Alignment Set, 4) Matcher Library, and 5) Central Controller. All of these

components collectively perform the tasks that are submitted to the Falcon-AO. Falcon-AO considers ontology at

both the element level and the structure level while matching two ontologies. Similarly, the COMA system also

generates different segments for the two schemas and then finds similarities among different generated segments of

the ontologies [16]. However, automatically generating appropriate segments of schemas is another research

challenge. COMA [16] initializes the matching process with partial input, which is manually constructed. On the

other hand [30] uses statistical values of different schemas to find the originating or basic building model for the

schemas and also finds similarities amongst compared schemas.

AgreementMaker [12, 13] provides a wide range of matching methods that address the different levels of

granularity (i.e., concept and structure level) of ontology. This algorithm also facilitates user intervention for

semantic conflict resolution and is a flexible system in that it can facilitate integration and performance tuning of

different matching methods. Prompt [49] is an ontology merging, difference, and alignment tool with a sophisticated

scheme of matching terms and is an open source system built using Java. It handles ontologies expressed in OWL

and RDFS and produces the alignments/mappings between two ontology inputs. Prompt is already being developed

as the Protégé plug-in. However, it is important to note that additional modifications are required on the user side in

order to use the source in a user’s own application.

H-Match [8] is an ontology matching system that takes ontologies as inputs and produces results as associations

among the related resources between different ontologies. The associations are then used to create the mappings

between these ontologies. H-Match is capable of dynamically configuring its adaptation to the semantic

complexities of the ontologies that are to be matched, where the number and types of ontology features are not

known in advance. H-Match enforces these dynamic adoption capabilities with the help of syntactic and semantic

techniques for ontology matching, and it also incorporates a set of four matching models, i.e., surface, shallow, deep,

and intensive. H-Match is used for knowledge discovery in the Helios framework, which is a peer-based system [9].

Similarly, in [64] a semantic approach is followed to find element and attribute level similarities in XML sources

using an Object-Relationship-Attribute model to integrate the sources. The focus is to uncover the implicit

semantics for the elements and attributes which can participate in the process of matching and integration.

Lily [63] is a combination of textual and structural techniques that is used to determine the alignments between

ontologies. Lily builds semantic descriptions for each entity of the ontology and then uses lexical similarity and

similarity flooding of the ontology structure. Its uniqueness lies in the use of web search engines to overcome

semantic heterogeneity. Post processing is conducted in order to remove inconsistencies and to increase the

accuracy of the results. The framework of FOAM [18] is based on heuristically calculated similarities of each

resource that is available in the ontology. Its focus is on the efficiency of the alignment that is generated that also

distinguishes it from the other systems. Like most of the other systems, FOAM also uses the structure of the

ontology to determine the relatedness among the entities of the participating ontologies.

MAFRA [44] is an Ontology MApping FRAmework that was mainly developed to distribute ontologies in the

Semantic Web. MAFRA provides a conceptual framework with a generic view of the complete distributed mapping

process among the distributed ontologies. Due to the decentralized nature of the Semantic Web, there is a significant

amount of information redundancy, and consistent evolution of the ontologies occurs in order to accommodate the

domain knowledge. Thus, the changing nature of ontology also needs to be re-established with regard to the

mapping among other ontologies, and the developers of MAFRA are considering this issue for future versions.

The mapping systems that are discussed above are those known for their outstanding performances according to

the Ontology Alignment Evaluation Initiative
11

. Among the discussed systems, AgreementMaker [12, 13] and Lily

[63] are the most efficient and widely used tools for ontology matching and mapping with relatively better accuracy.

Also, when the alignment is constructed from scratch, the accuracy is generally better than that of the other existing

algorithms [8, 44, 49]. However, like every other system, both AgreementMaker and Lily take a considerable

amount of time to establish alignments and have no support for the mapping reconciliation process (i.e., unreliable

mappings).

All of the above systems reinitiate the process of mapping between ontologies after updating. This consumes a

lot of time as the changes are usually very few and simple in type [21, 27]. Systems, such as those in [2, 17, 44, 55,

11 http://ontologymatching.org/evaluation.html

63, 65], are designed to support mapping evolution; however, some have a different focus, and a few are not mature

enough in their approach. The systems discussed in [17 and 65] mainly focus on the schema-based mapping

evolution that supports Local as View and Global as View approaches [41], which support query reformulation [55]

in data integration applications. The system proposed in [65] focuses on mapping evolution that is based on the

incremental adoption of changed mappings. The incremental adoption technique makes it hard to cope with drastic

schema evolution situations. The system discussed in [17] is based on the composition and inversion technique. This

technique restricts the schema evolution to a set of defined states that are based on mapping evolution options,

which do not occur in real world situations [21]. The approach discussed in [55] formalized a unified schema for

managing the mappings generated between schemas after the matching process. However, our proposed approach is

different from those used [17, 30, 55, 65] as the schema and the ontologies are fundamentally different [2, 48]. In [2],

the authors proposed a mapping evolution algorithm for mappings between a schema and the schema’s annotations.

The focus of the algorithm is to maintain consistency with regard to the mapping between the schemas and their

corresponding annotations. Both of the systems discussed in [17, 65] and [2] are different from our proposed system,

as [17 and 65] focus on schema level mapping evolution, and [2] focuses on the mapping evolution between schema

and annotations (Meta data) for the schema. MAFRA [44] and Lily [63] are the two mapping systems that, in

addition to mapping the generation between the two ontology versions, also focus on the evolution of the mappings

when at least one of the mapped ontologies evolves from one state to another. However, neither MAFRA [44] nor

Lily [63] has a concrete methodology in place that can support the mapping of evolving ontologies. Thus, for the

testing and discussion of the proposed system, the authors made extensions to the existing systems in order to

support the mapping reconciliation procedure instead of redeveloping a completely new mapping system.

5.0 Conclusions and Future Directions

Information exchange and interoperability are key research issues for many research groups and financial

organizations. Mapping between two information sources (i.e., ontologies) is the key for information sharing and

achieving interoperability. Systems exist that generate mappings between ontologies to support the exchange of

information and interoperability; however, these are time consuming when we consider dynamic ontologies from

the participating organizations that evolve over the passage of time. The dynamic nature of ontologies makes the

existing mappings unreliable and stale, thus these mappings need to be reconciled to keep the services functioning

optimally in order to exchange information. The proposed scheme uses the concept of CHL to log all the changes in

an evolving ontology. These logged changes are later used with our proposed extensions to the existing mapping

systems during the reconciliation of the mapping process. The process of mapping reconciliation is executed and

tested on both cases i.e., evolution of only one ontology and evolution of both ontologies, and the proposed

extensions to the existing systems have shown good results. The proposed scheme has drastically reduced the

amount of time required to reconcile ontology mappings among dynamic ontologies when compared to the existing

systems that recreate the process from scratch. The claims for our proposed extensions are validated by the results

from seven (7) different mapping systems and thirteen (13) different data sets. Our future work will focus on the

variable mapping accuracy of the proposed technique in order to find an optimized technique that is not only time

efficient but also provides the same level of mapping accuracy by incorporating meta information with the logged

changes.

Acknowledgement

This work was supported by the Industrial Core Technology Development Program (10049079, Development

of Mining core technology exploiting personal big data) funded by the Ministry of Trade, Industry and Energy

(MOTIE, Korea). Also, this work was supported in part by the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MSIP) (NRF-2014R1A2A2A01003914)

References

1. Alchourrn C. E, Grdenfors P, Makinson D. “On the logic of theory change: Partial meet contraction and revision functions”. Journal of

Symbolic Logic, 50(1), 1985.

2. An. Y and Topaloglou. T. “Maintaining Semantic Mappings between Database Schemas and Ontologies”, Semantic Web, Ontologies and

Databases, Lecture Notes in Computer Science, pp. 138-152, 2008.

3. Bhat. P. B, Raghavendra. C. S, and Prasanna. V. K. “Efficient Collective Communication in Distributed Heterogeneous Systems”. In Proc.

19th IEEE International Conference on Distributed Computing Systems (ICDCS), pages15–24, Austin, TX, 1999.

4. Bicer. V, Kilic. O, Dogac. A, Laleci. G. B. “Archetype-based semantic interoperability of web service messages in the health care domain”,

International Journal of Semantic Web and Information Systems (IJSWIS), 1(4), pages 1–23, 2005.

5. Bilal M, Batool R, Khan W. A, Huh E. N, Lee S. Y, "SPHeRe: A Performance Initiative towards Ontology Matching by implementing

Parallelism over Cloud Platform", The Journal of Supercomputing, Vol. 68, No. 1, pp.274-301, 2014.

6. Brynjolfsson. E, Mendelson. H. “Information systems and the organization of modern enterprise”. J. organ. Comput. 3(3) 245–255, 1993.

7. Buyya. R, Yeo. S, Venugopal. S, Broberg. J, and Brandic. I. “Cloud computing and emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility”. Future Generation Computing Systems, 2009.

8. Castano. S, Ferrara. A, and Montanelli. S. “Matching ontologies in open networked systems”. Techniques and applications, Journal on

Data Semantics (JoDS), vol. V, pp. 25-63, 2006.

9. Chen. H, Finin. T, and Joshi. A. “An ontology for context-aware pervasive computing environments”. Special Issue on Ontologies for

Distributed Systems, Knowledge Engineering Review, Vol. 18, No. 3, pp.197–207, 2004.

10. Chen. F, Zhang. Z, Li. L, Kang. J, and Yang. H. “Service Identification via Ontology Mapping”. In Proceedings of the 33rd Annual IEEE

International Computer Software and Applications Conference, pages 486--491, USA, 2009.

11. Choi. N, Song. I, and Han. H. “A survey on ontology mapping”, SIGMOD Rec. Vol. 35, No. 3. Pages 34 – 41, 2006.

12. Cruz. I. F, Antonelli. F. P, and Stroe. C. “AgreementMaker: Efficient Matching for Large Real-World Schemas and Ontologies”. PVLDB,

2(2):1586–1589, 2009.

13. Cruz. I. F, Sunna. W, Makar. N, Bathala. S. “A visual tool for ontology alignment to enable geospatial interoperability”. Journal of Visual

Languages and Computing 18 (3), pp 230–254, 2007.

14. Dietze. S, Benn. H, Domingue. J, Conconi. A, and Cattaneo. F. “Two-Fold Service Matchmaking - Applying Ontology Mapping for

Semantic Web Service Discovery”. In Proceedings of Asian Semantic Web Conference, pages 246-260, China, 2009.

15. Dietze. S, Gugliotta. A, Domingue. J, Yu. H. Q, and Mrissa. M. “An automated approach to Semantic Web Services Mediation”. Journal

on Service Oriented Computing and Applications, pages 261-275, volume (4), issue (4), 2010.

16. Do. H, and Rahm. E, “COMA- A system for flexible combination of schema matching approaches” in proceedings of the International

Conference on Very Large Databases (VLDB 2002), pages: 610 - 621, Hong Kong, China, 2002.

17. Fagin. R, Kolaitis. P, Popa. L, and Tan. G. “Schema Mapping Evolution Through Composition and Inversion”, Schema Matching and

Mapping, Data-Centric Systems and Applications, pp. 191-222, 2011.

18. Ehrig. M and Sure. Y. “Foam - framework for ontology alignment and mapping; results of the ontology alignment initiative”. In Proc. of

the Workshop on Integrating Ontologies, 2005.

19. Elmasri. R, Navathe. S. B., “Fundamentals of Database Systems”. Addison Wesley, 4th edition, 2003.

20. Ferrara, A., Nikolov, A., Noessner, J., & Scharffe, F., “Evaluation of instance matching tools: The experience of OAEI”, Web Semantics:

Science, Services and Agents on the World Wide Web, 21, 49-60, 2013.

21. Flouris. G, Manakanatas. D, Kondylakis. H, Plexousakis. D, and Antoniou. G. “Ontology Change: Classification and Survey”. Knowledge

Engineering Review (KER), 23(2), pages 117-152, 2008.

22. Gangemi. A. “Ontology design patterns for semantic web content”. In 4th Intl Semantic Web Conf (ISWC), vol. 3729, Springer, Ireland,

2005.

23. Gianolli. P. R, Mylopoulos. J, “A Semantic Approach to XML-Based Data Integration”, In proceedings of the International Conference on

Conceptual Modelling (ER'01)}, pages:117-132, Yokohama, Japan, 2001.

24. Gray J, Reuter A., “Transaction Processing: Concepts and Techniques”. Morgan Kaufmann Publishers, Inc, San Francisco, USA, 1993.

25. Groß, A. Hartung, M. Thor, A. Rahm, E. “How do Ontology Mappings Change in the Life Sciences?” Selected Poster @ Intl. Conference

on Data Integration in the Life Sciences (DILS), June 2012.

26. Gulić, M., & Vrdoljak, B., “CroMatcher-Results for OAEI 2013”, In Proceedings of the 8th International Workshop on Ontology

Matching, pp. 117-222, October 2013.

27. Halevy. A. Y, Ives. Z. G, Jayant. M, Mork. P, Suciu. D, and Tatarinov. I. “The Piazza peer data management system”. IEEE Transactions

on Knowledge and Data Engineering, volume (16), pages 787 – 798, 2004.

28. Hartung, M. Kirsten, T. Rahm, E. “Analyzing the Evolution of Life Science Ontologies and Mappings”, Proc. of 5th Int. Workshop on

Data Integration in the Life Sciences (DILS), Springer LNCS 5109, June 2008.

29. Hartung, M. Groß, A. Rahm, E. “COnto-Diff: Generation of Complex Evolution Mappings for Life Science Ontologies”, Journal of

Biomedical Informatics 46 (1): 15-32, Feb 2013.

30. He. B, Chang. K. C. C., “Statistical schema matching across web query interfaces”, In proceedings of the ACM International Conference

on Management of Data (SIGMOD 2003), pages: 217-228, San Diego, California, United States, 2003.

31. Huff. S. M, Rocha. R. A, Bray. B. E, Warner. H. R, Haug. P. J. “An event model of medical information representation”. JAMIA.1995; 2:

116-134, 1995.

http://www.csd.uoc.gr/~kondylak
http://www.ics.forth.gr/isl/people/people_individual.jsp?Person_ID=5
http://www.ics.forth.gr/~antoniou/
http://journals.cambridge.org/action/displayJournal?jid=ker

32. Hu. W, and Qu. Y. “Falcon-AO: A practical ontology matching system”. Journal of Web Semantics. 6, 3, pages 237-239, 2008.

33. Jones. D, Bench-Capon. T, Visser. P. “Methodologies for ontology development”. in: J. Cuena (ed.), IFIP XV IT & KNOWS, Hungary,

1998.

34. Kang. J, Naughton. J. F. “On schema matching with opaque column names and data values”, In proceedings of the ACM International

Conference on Management of Data (SIGMOD 2003), pages: 205-216, San Diego, California, United States, 2003.

35. Khan W. A, Bilal M, Khattak A. M, Hussain M, Afzal M, Lee S. Y, Kim E. S, "Object Oriented and Ontology Alignment Patterns based

Expressive Mediation Bridge Ontology (MBO)", Journal of Information Science, 2014 (accepted for publication)

36. Khattak. A. M, Mustafa. J, Ahmed. N, Latif. K, Khan. S. "Intelligent Search in Digital Documents". Web Intelligence and Intelligent Agent

Technology, IEEE/WIC/ACM International Conference on, vol. 1, pp. 558-561, Australia, 2008.

37. Khattak. A. M, Latif. K, Lee. S. Y, Lee. Y. K. “Ontology Evolution: A Survey and Future Challenges”. The 2nd International Conference

on u- and e- Service, Science and Technology (UNESST 09), Korea, 2009.

38. Khattak. A. M, Latif. K, Lee. S. Y. “Change management in evolving web ontologies”. Knowl.-Based Syst. 37: 1-18, 2013.

39. Klein. M. “Change management for distributed ontologies”. PhD thesis, Vrije University, Netherlands, 2004.

40. Lee. T. B, Hendler. J, and Lassila. O. “The Semantic Web: a new form of web content that is meaningful to computers will unleash a new

revolution of possibilities”. Sci. Am 5(1), 2001.

41. Lenzerini. M. “Data integration: a theoretical perspective”, In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pp. 233-246, New York, USA, 2002.

42. Liang. Y. D. “Enabling active ontology change management within semantic web-based applications”. Mini phd thesis, University

of Southampton, 2006.

43. Madhavan. J, Bernstein. P and Rahm. E. “Generic Schema Matching with Cupid”. 27th International Conference on Very Large Data

Bases, 2001.

44. Maedche. A, Motik. B, Silva. N, and Volz. R. “MAFRA - A MApping FRAmework for Distributed Ontologies”. In Proceedings of the

13th international Conference on Knowledge Engineering and Knowledge Management. ontologies and the Semantic Web, pages 235-

250, London, 2002.

45. Martin. M, Paolucci. S, McIlraith. M, Burstein. D, McDermott. D, McGuinness. B, Parsia. T, Payne. M,. Sabou. M, Solanki. N, Srini-

vasan, and Sycara. K. “Bringing semantics to web services :The OWL-S approach”. presented at the First Int.Workshop on Semantic Web

Services and Web Process Composition (SWSWPC2004), SanDiego ,CA, 2004.

46. Mathur, I., Joshi, N., Darbari, H., & Kumar, A., “Shiva: A Framework for Graph Based Ontology Matching”. arXiv preprint

arXiv:1403.7465, 2014.

47. Nagarajan. M, Verma. K, Sheth. A. P, Miller. J, Lathem. J. "Semantic Interoperability of Web Services: Challenges and Experiences". Proc.

4th IEEE International Conference on Web Services, IEEE CS Press, pages 373–382, 2006.

48. Noy. N, and Klein. M. “Ontology Evolution: Not the Same as Schema Evolution”, Journal of Knowledge Information Systems, vol 6, issue

4, pp. 428-440, 2004.

49. Noy. N and Musen. M. “The PROMPT Suite: Interactive tools for ontology merging and mapping”. International Journal of Human-

Computer Studies, (59(6)): pages 983–1024, 2003.

50. Oberle. D, Volz. R, Motik. B, and Staab. S. “An extensible ontology software environment”. In Handbook on Ontologies (Series of

International Handbooks on Information Systems), pp. 311–333, Springer, 2004.

51. Paolucci. M, Kawamura. T, Payne. T. R, Sycara. K. “Semantic matching of web services capabilities”. in proceedings of International

Semantic Web Conference (ISWC-2002), 2002.

52. Paolucci. M, Srinivasan. N, Sycara. K. “Expressing WSMO Mediators in OWL-S”. In proceedings of Semantic Web Services (ISWC),

2004.

53. Roure. D. D, Jennings. N. R and Shadbolt. N. R. “The Semantic Grid: Past, present and future”. In Proceedings of the IEEE 93, 3, 669–

681, 2005.

54. Rogozan. D and Paquette. G. “Managing Ontology Changes on the Semantic Web”. IEEE/WIC/ACM International Conference on Web

Intelligence, 2005.

55. Santos Mello. R. D, Castano. S, Heuser. C. A. “A Method for the Unification of XML Schemata” Information & Software Technology,

vol: 44(4), pages: 241-249, 2002.

56. Sheth. A. P and Larson. J. A. “Federated database systems for managing distributed, heterogeneous, and autonomous databases”. ACM

Computing Surveys, 1990.

57. Shvaiko. P and Euzenat. J. “Ten Challenges for Ontology Matching”. In proceedings of the 7th International Conference on Ontologies,

Darabases, and Applications of Semantics (ODBASE), 2008.

58. Shvaiko. P, Euzenat. J, “Ontology Matching: State of the Art and Future Challenges”. IEEE Trans. Knowl. Data Eng. 25(1): 158-176.

2013.

59. Tan. P. S, Goh. A. E. S, and Lee. S. S. G. “An Ontology to Support Context-Aware B2B Services”. IEEE International Conference on

Services Computing (SCC), pages 586-593, USA, 2010.

60. Tao, F., Cheng, Y., Xu, L. D., Zhang, L., & Li, B. H, “CCIoT-CMfg: cloud computing and Internet of Things based cloud manufacturing

service system”, 1-1, 2014.

61. Tunniclie. S, Davis. I. Changeset, 2005, Online, http://vocab.org/changeset/schema.html.

62. Uschold. M. “Building ontologies: Towards a unified methodology”. in: 16th Annual Conference of the British Computer Society

Specialist Group on Expert Systems, Cambridge, UK, 1996.

63. Wang. P and Xu. B. “Lily: Ontology alignment results for oaei 2009”. Ontology Matching (OM), 2009.

64. Yang. X. Lee. M. L. Ling. T. W., “Resolving Structural Conflicts in the Integration of XML Schemas: A Semantic Approach”, In

proceedings of the International Conference on Conceptual Modeling (ER 2003)}, Chicago, Illinois, United States, 2003.

65. Yannis. V, Renée J. M, and Popa. L. 2004, “Preserving mapping consistency under schema changes”, The VLDB Journal, Volume 13,

Number 3, 274-293, 2004.

http://www.springerlink.com/content/1066-8888/13/3/
http://www.springerlink.com/content/1066-8888/13/3/

