Current evidence and practical applications of flywheel eccentric overload exercises as post-activation potentiation protocols

Beato, Marco; McErlain-Naylor, Stuart A.; Halperin, Israel; Dello Iacono, Antonio

Published in:
International Journal of Sports Physiology and Performance

DOI:
10.1123/ijspp.2019-0476

Published: 28/02/2020

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Current evidence and practical applications of flywheel eccentric overload exercises as post-activation potentiation protocols: A brief review

Abstract

Purpose: This review summarizes the evidence on post-activation potentiation (PAP) protocols using flywheel eccentric overload (EOL) exercises.

Methods: Studies were searched using the electronic databases PubMed, Scopus and ISI Web of Knowledge.

Results: Seven eligible studies were identified, identifying the following results: First, practitioners can use different inertia intensities (e.g. 0.03 to 0.88 kg∙m²), based on the exercise selected, to enhance sport specific performance. Second, the PAP time window following EOL exercise seems to be consistent with traditional PAP literature, where acute fatigue is dominant in the early part of the recovery period (e.g. 30 seconds) and PAP is dominant in the second part (e.g. 3 and 6 minutes). Third, since EOL exercises require large force and power outputs, a volume of 3 sets with the conditioning activity (e.g. half squat or lunge) seems to be a sensible approach. This could reduce the transitory muscular fatigue and thereby allow for a stronger potentiation effect compared to larger exercise volumes. Fourth, athletes should gain experience performing EOL exercises prior to utilizing the tool as part of a PAP protocol (3-4 sessions of familiarization). Finally, the dimensions of common flywheel devices offer useful and practical solutions to induce PAP effects outside of normal training environments and prior to competitions.

Conclusions: EOL exercise can be utilized to stimulate PAP responses in order to obtain performance advantages in various sports. However, future research is needed to determine what EOL exercises, intensity, volume, and rest intervals optimally induce the PAP phenomenon and facilitate transfer effects on athletic performances.
Introduction to the topic

This review summarizes the current evidence regarding post-activation potentiation (PAP) strategies using flywheel eccentric overload (EOL) exercises. The first section covers the PAP phenomenon, its underpinning neurophysiological mechanisms, and commonly used PAP protocols. The second section describes the characteristics of flywheel ergometers and the rationale for using EOL to induce PAP effects. The third section summarizes the growing literature, which has evaluated the onset, time course, and magnitude of PAP effects on athletic performance using EOL exercises. Lastly, this review reports some practical recommendations on how PAP effects can be elicited using EOL exercises in applied settings and proposes future research directions.

1.1 Post-activation potentiation (PAP)

PAP is defined as “the phenomena by which muscular performance characteristics are acutely enhanced as a result of their contractile history”.1–3 This term is generally used when the enhanced muscular response following a potentiation activity can be verified with a twitch interpolation technique.2,4,5 However, among sport scientists and coaches, PAP is commonly interpreted as an enhancement of athletic performance measured in voluntary exercise requiring rapid or maximal force production.3,6 Two underpinning pathways are thought to account for the PAP effects: peripheral and central. Myosin regulatory light chain (RLC) phosphorylation is suggested to be the main peripheral mechanism associated with PAP. The augmented phosphorylation of RLC is mediated via the enzyme myosin light chain kinase, which leads to a greater rate of cross-bridge attachment.1,7,8 This is due to an increased sensitivity of the contractile proteins to calcium (Ca\(^{2+}\)), which is released from the sarcoplasmic reticulum.3,9,10 This mechanism facilitates the force and rate of force development of low and high frequency contractions.11,12

PAP may also result from spinal and supraspinal pathways. It is speculated that through increases in synaptic efficiency induced by residual elevation of presynaptic Ca\(^{2+}\), and decreases in transmitter failure occurring at higher order motoneurons responsible for fast-twitch motor units.13,14 These central effects may contribute to a sustained recruitment of higher threshold motor units and increases in fast-twitch fiber contribution to muscular contraction.15 However, a recent review does not support this central explanation underpinning PAP.2 Hence, it could be concluded that RLC phosphorylation is considered the primary mechanism for PAP, while other influences at the central level remain to be clarified.
1.2 Methodological approaches for PAP protocol design

There are a number of variables that need to be accounted for when designing PAP protocols: type of muscular contraction, time interval between the PAP conditioning activity and subsequent performance test, biomechanical similarities, and intensity of load. PAP methods are commonly classified as either static or dynamic, according to the muscular contraction mode of the conditioning activity. Examples of static potentiating protocols include isometric continuous or intermittent maximal voluntary contractions (MVC), while dynamic protocols include loaded jumping, sprinting, throwing movements, and resistance exercises. Although both methods can potentiate subsequent athletic performances, they induce dissimilar fatigue and potentiation responses. The different nature of the underpinning PAP mechanisms induced by static and dynamic methods has specific implications for the methodological design of PAP protocols. Static PAP protocols implement volumes (1-5 sets x 3-10 s) of isometric contractions executed at high intensity (> 90% MVC). PAP protocols using dynamic contractions require greater volumes and are commonly designed as multiple-set configurations (2-3 sets x 3-8 repetitions) and executed at submaximal intensities (60-90% 1RM). Another key variable affected by the specific potentiation method is the necessary time interval between the PAP conditioning activity and the subsequent performance test. Whereas the majority of the PAP studies suggest a recovery interval of 3 to 11 min to elicit the greatest PAP effect, the exact PAP onset time and duration vary and depend on the type of the conditioning activity. Isometric contractions evoke PAP earlier (≤ 3 min) when compared with dynamic conditions, which require longer rest intervals (≥ 3 min). However, PAP effects induced by dynamic protocols persist for longer durations compared to static protocols, and can be maintained up to 12 min after protocol completion. Thus, it is likely that each potentiation complex achieves the PAP via different pathways, affecting the onset, magnitude and duration of the potentiation effects. Finally, the contemporary literature recommends practitioners to select conditioning exercises with biomechanical similarity to the subsequent athletic performance intended to improve (e.g. squat exercises for jump tasks or hip thrusts for sprint tasks). Indeed, high kinematic and kinetic specificity seem to play a favorable role in optimizing the potentiation effects.

2.1 Flywheel devices and eccentric overload (EOL) training

Flywheel ergometers have been present in the scientific literature since the early twentieth century. They were developed as resistance training devices for space travellers exposed to
non-gravity environments and became popular in the early 1990s as a tool for high intensity resistance training without the requirement for gravitational resistance.30,31 During the concentric phase, the rotational acceleration of the flywheel develops inertial torque, initially accumulated and then returned back during the eccentric phase, allowing for repetitive concentric-eccentric cycles.32 Skeletal muscle is able to develop greater forces during eccentric than concentric activities,33 and such flywheel exercises can determine a more demanding eccentric phase due to the augmented mechanical load necessary to absorb the kinetic energy stored in the flywheel and to decelerate it. This is not achievable by performing traditional isotonic weightlifting exercises.34–36 As a consequence, flywheel resistance devices allow for maximal force development throughout the full range of motion, with short periods of greater eccentric than concentric force demands. This observation has led to subsequent increased utilisation of these devices to obtain acute responses and chronic adaptations (e.g. for strength, hypertrophy, power, injury prevention, and rehabilitation) in both amateur and professional sporting settings.9,33,37–40 Moreover, due to the portability of these devices, practitioners can use them outdoors or bring them out from weight rooms, further increasing their practical sporting applications.

2.2 Evidence and hypothesis supporting EOL training as a PAP strategy

EOL training has been consistently used to induce chronic adaptations, however a few studies have investigated the acute potentiation benefits offered by this exercise modality.34,41 The rationale for utilizing flywheel EOL protocols to facilitate PAP responses is based on the to central and peripheral mechanisms underpinning PAP.13 EOL actions, as well as eccentric contractions in general, are believed to selectively recruit higher order motor units to a greater extent than concentric contractions.42–46 This results from higher motor unit discharge rate and synchrony.1,47 This relatively greater contribution of motor unit activation may be augmented even more during compound multi-joint movements, commonly executed during EOL exercises (e.g. squat).48–50 A further advantage of EOL exercises as potentiating activities are the consistent greater eccentric force, power and derivative outputs produced.51,52 These greater eccentric kinetic outputs can contribute to improving stretch-shortening cycle performance, which may induce stronger transfer effects on the fast mixed eccentric/concentric actions of athletic tasks such as jumps, sprinting and changing direction.51,53 These tasks may benefit from the prior execution of EOL exercises which functionally overload the musculo-tendinous system in a specific manner (e.g. eccentric contraction) and with a high degree of similarity in terms of muscle actions and joint kinematics used.15,26–28
3.1 Current knowledge related to EOL exercise and PAP

Knowledge on the PAP effects of EOL exercises is relatively new to the scientific community. The first investigation on this topic was published in 2014 and seven studies have examined the PAP effects of EOL exercises on athletic tasks performance to date (Table 1). These studies were identified through searches using Pubmed, Scopus and ISI Web of Knowledge databases using the following terms “eccentric overload”, “eccentric overload exercise”, “flywheel”, “iso-inertial”, “flywheel resistance”, and “post-activation potentiation”. Additionally, the references of all the identified articles were searched for other relevant articles.

In the selected studies, changes in performance following PAP protocols were calculated as percentage differences (%) using the following formula: \(\frac{\text{post-PAP}_i - \text{baseline}}{\text{baseline}} \times 100 \), with \(i \) representing any post-PAP assessment time point. Hedges’ \(g \) effect sizes (ES) were calculated from the original to examine the extent of the PAP effects. Specifically, ES were determined for each PAP protocol as for within-group analyses and calculated relatively to baseline or control conditions absent of any PAP intervention.

The equation \(d = \frac{M_{\text{diff}}}{S_{\text{av}}} \) (\(M_{\text{diff}} \): mean difference; \(S_{\text{av}} \): average standard deviation) with the adjustment factor: \(g = \left(1 - \frac{3}{4df - 1} \right) \times d \) were used for this purpose.

This approach enabled estimation of unbiased effects as well as standardized comparisons between protocols. ES were then interpreted as trivial (< 0.2), small (0.2 - 0.5), medium (0.5 - 0.8), or large (> 0.8). Despite the low number of studies, the summary of their results provides preliminary evidence about methodological guidelines for practical applications. PAP protocols designed with flywheel EOL exercises using either single or multiple sets, performed at varying intensities (0.03 kg·m² to 0.88 kg·m²), with brief rest period durations (3-9 min) seem effective to induce PAP effects (Table 1). Moreover, the potentiation was found to be of a greater extent on athletic tasks having higher biomechanically similarity with the potentiating EOL exercise.

Table 1 near here*
With regard to the volume of EOL exercise implemented as PAP protocols, both single and
multiple sets can induce potentiation resulting in augmented kinetic outputs (e.g. force,
impulse, power) and enhanced athletic performances (e.g. vertical and horizontal jumps,
sprints, changes of direction, and swimming kick start). Although no study has
specifically compared the PAP effects of different EOL exercise volumes, this review suggests,
based on previous PAP literature, possible advantages in protocols using multiple sets
compared with a single set. This assumption is supported by the relative greater range of ES
on athletic performances reported in studies implementing multiple sets (small to large)
compared with those using single set protocols (small) (Table 1). Based on the contemporary
scientific literature, multiple set protocols seem relatively preferable, though this interpretation
must be taken with caution. It is known that even the same PAP conditioning activity and
stimulus may induce varying responses between individuals and on different athletic tasks.

In contrast to traditional PAP methods, where onset, magnitude and duration of the potentiation
are modulated by the different intensities of the conditioning activity, it seems that consistent
PAP effects can be induced by EOL exercises using a broader range of intensities. On
one hand, the present review confirms the relationship between fatigue and PAP and the
evidence that both are present at PAP protocol completion. In fact, EOL exercises using
different inertial loads (e.g. 0.03 kg.m\(^2\) or 0.06 kg.m\(^2\)) initially induce a transient state of fatigue
where athletic performance is impaired. However, it is interesting to note that following EOL
exercise PAP outweighs fatigue after relatively short rest intervals (<6 min) regardless of the
exercise intensity. In a recent study, Beato et al. compared the PAP effects of “moderate” (0.03
kg.m\(^2\)) and “high” (0.06 kg.m\(^2\)) inertial flywheel half squat intensities on countermovement
jump, long jump, and change of direction performance. The authors did not find any
difference between the protocols on the onset and magnitude of the resulting PAP effects, thus
concluding that both exercise intensities may be used equivalently.

The present review reconfirms exercise specificity and similarity between the potentiation
protocol and the subsequent athletic tasks for exploiting optimal PAP effects following EOL
exercises. This assumption is supported by two main observations. First, greater potentiation
ES were consistently found on athletic tasks with kinematic characteristics and ground reaction
force orientation profiles similar to those of the EOL exercise. Most of the EOL exercises used
in the reviewed studies were performed as half squat movements, which are characterized by
a predominant vertical orientation of the associated kinetic (e.g. ground reaction force)
responses. Therefore, it is not surprising that EOL half squats potentiated vertical-oriented
tasks like squat jumps and countermovement jump to a greater extent (small to medium) than
horizontal-oriented ones like sprinting (trivial) and change of direction (small).6,34 Second, similarly greater effects were found on athletic tasks executed as coupled eccentric-concentric movements compared with concentric-only movements or isokinetic actions.59 Specifically, small to large effects were reported on countermovement jump performance following EOL half squats,6,9 whereas the same potentiation stimulus and rest intervals only induced trivial to small effects on either swimming kick start performance 58 or isokinetic concentric knee extension and concentric and eccentric flexion peak torque outputs.6 These findings support the rationale of prescribing potentiating exercises in which muscle actions and joint kinematic and kinetic profiles are similar to those in the subsequent activity to optimize the PAP effects. Nevertheless, this interpretation must be taken with caution and needs to be further verified since limited literature currently exists on the topic. Future research comparing PAP effects of horizontal and vertical based EOL exercises are needed.

4.1 Practical applications

Implementing EOL exercises is a novel PAP inducing strategy that can be used by applied practitioners. Until further research is conducted to provide precise evidence-based guidelines, the following preliminary practical recommendations can be suggested. First, EOL using different loads can stimulate similar magnitudes of PAP response, therefore practitioners may use a broader range of inertial intensities (\textit{e.g.} 0.03 to 0.88 kg·m2) to enhance the subsequent athletic performances (\textit{e.g.} countermovement jump, long jump, change of direction). However, greater intensity may be accompanied with greater levels of acute fatigue, which should be taken into account when planning the rest period between the conditioning stimulus and subsequent activity. Second, the rest period needed following EOL exercises seems to be consistent with the gravitational loading-based PAP literature: muscular fatigue is dominant immediately following the PAP stimulus (up to 3 minutes), whereas PAP is dominant in the minutes thereafter (after 3 minutes). Third, since EOL exercises require large force and power outputs, low volumes (\textit{e.g.} 2-3 sets) of the conditioning activity seems to be a sensible approach. In fact, higher volumes could induce greater acute fatigue and potentially delay or even restrict the onset of the PAP effects on performance. Due to the heavy eccentric muscular strain and the specificity of the EOL exercises, it is suggested that athletes gain experience performing 3-4 EOL conditioning sessions prior to utilizing this training method as part of a PAP protocol. Furthermore, the dimensions of common flywheel devices offer useful and practical solutions to induce PAP effects outside normal training environments and in competitions. While mobilizing barbells and weight plates can be challenging, such challenges
are minimized with flywheel devices, making them a logistically excellent PAP inducing tool for such situations.

4.2 Limitations and future directions

A few limitations emerged from the existing literature which should be acknowledged and discussed in view of future research directions. In particular, none of the studies reported in this review have enrolled professional senior team-sport or female athletes which causes uncertainty about the beneficial application of EOL-based PAP protocols to enhance athletic performances in these populations. The potentiation responses induced by traditional PAP protocols are clearly mediated by the participants’ training background, strength and power capabilities. Conversely, there is no evidence about the concurrent role of individual subjects’ physical characteristics or any of the EOL-related performances (e.g. maximal and average force and power outputs) on the potentiating effects on subsequent athletic performance. These aspects should be addressed and investigated through dedicated research designs. Additionally, EOL requires large force and power output during execution, thus a relatively lower volumes (e.g. 3 sets) of the PAP conditioning activity seem to be a viable approach. This could also reduce the transitory muscular fatigue, and thereby allowing potentiation effects to be realized earlier (e.g. < 3 min vs. > 6 min) and to a greater extent (e.g. moderate vs. small effects) compared with higher conditioning volumes (> 3 sets) but future research is needed to clarify this statement. The relatively greater mechanical demands and the specificity of the EOL exercises also highlight the importance of longer familiarization periods compared to traditional resistance exercises before their implementation as PAP protocols. Indeed, it may be the case that the PAP effects will increase with experience gained in performing EOL exercises. EOL exercise is commonly performed through a variety of brands and flywheel models having different designs, inertial mechanisms, manufacturing materials and friction coefficients. This is the main reason behind the lack of gold standard valid and reliable procedures that objectively determine the magnitude of inertial loads and associated intensities.

Future studies are warranted to determine what EOL exercise modalities among intensity (inertias), volume (sets and repetitions), rest interval, and exercise type optimally induce the PAP phenomenon and enhance athletic performances. For example, using metrics such as mean velocity, could provide objective feedback on both concentric and eccentric outputs during the flywheel exercise for more precise intensity prescription and monitoring. This could also enable relative intensities to be quantified between athletes or within-athlete at a given inertial
Another research direction worth perusing is the usefulness of self-regulating the output produced with flywheel devices to better manage accumulating fatigue, and thus, to optimize the PAP response. Furthermore, in all studies the same PAP inducing exercise (half squats and lunges) was utilized. It would thus be of value to study other exercises (e.g. horizontal dominant) as well in future studies. Finally, only two studies compared EOL to traditional gravitational resistance protocols as the PAP inducing modality. Given the extensive knowledge of gravitational resistance exercise on PAP, a comparison of EOL to such exercise would shed further light on the overall usefulness of EOL as a tool to induce PAP.

Conclusions

EOL exercises performed through inertial flywheel devices can be used as an alternative PAP method to acutely potentiate athletic performance. This review describes the theoretical rationale of using EOL exercises to induce potentiation effects and the underpinning mechanisms favoring enhanced performance. The contemporary literature provides preliminary methodological guidelines for coaches and practitioners intending to design PAP protocols by using EOL exercises. Future research is required to clarify the acute effects induced by EOL exercises so to optimize their use as a PAP methodology in sport.

References

5. MacIntosh BR. Cellular and whole muscle studies of activity dependent potentiation.

38. Tous-Fajardo J, Maldonado RA, Quintana JM, Pozzo M, Tesch PA. The flywheel leg-

49. Fang Y, Siemionow V, Sahgal V, Xiong F, Yue GH. Greater movement-related
cortical potential during human eccentric versus concentric muscle contractions. *J
Neurophysiol*. 2001;86(4):1764-1772. doi:10.1152/jn.2001.86.4.1764

50. Norrbrand L, Pozzo M, Tesch PA. Flywheel resistance training calls for greater
1005. doi:10.1007/s00421-010-1575-7

Sport Med. 2011;41(2):125-146. doi:10.2165/11538500-000000000-00000

52. Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-
Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after
eccentric overload flywheel resistance training: a systematic review and meta-analysis.

53. Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-
doi:10.2165/11318370-000000000-00000

54. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a

56. Cuenca-Fernández F, López-Contreras G, Arellano R. Effect on swimming start
performance of two types of activation protocols: lunge and YoYo squat. *J strength

of activation protocols based on postactivation potentiation on 50-m freestyle
doi:10.1519/JSC.0000000000002698

59. Timon R, Allemano S, Martinez-guardado I, Olcina G. Post-activation potentiation on
squat jump following two different protocols : Traditional vs Inertial flywheel. *J Hum

60. Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in
doi:10.1177/0363546512470634