Proteinase activated receptor 2 (PAR2) modulation of murine airway function
Black, Kimberly; MacKenzie, Andrew; Dunning, Lynette; Crilly, Anne; Brzeszczyska, Joanna; McGarvey, Lorcan; Thornbery, Keith; Goodyear, C.S.; Lockhart, John; Litherland, Gary

Published: 10/09/2019

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
PROTEINASE ACTIVATED RECEPTOR 2 (PAR2) MODULATION OF MURINE AIRWAY FUNCTION

K. Black1, A. MacKenzie1, L. Dunning1, A. Crilly1, J. Brzeszczynska1, L. McGarvey2, K. Thornbury3, C.S. Goodyear4, J.C. Lockhart1, G.J. Litherland1

1Border & Regions Airways Training Hub, Institute of Biomedical and Environmental Health Research, School of Health & Life Sciences, University of the West of Scotland, Paisley PA1 2BE. 2Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland. 3Smooth muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland. 4Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, Scotland.

Hyperactivity, inflammation and hyperplasia/hypertrophy of airway smooth muscle (ASM) limit airflow and are key features of chronic obstructive pulmonary disease (COPD). Proteinase activated receptor-2 (PAR2) is a key modulator of inflammatory responses in respiratory disease such as asthma, and promotes ASM relaxation. However, the role of the receptor in ASM in conditions such as COPD is not well understood1.

The aim of this study was to use immunohistochemistry and an ex vivo murine airway myograph assay to confirm the presence in murine lung of PAR2 as a functional airway modulator. PAR2 (detected using Alomone APR-32 antibody) was present on both murine airway and lung tissue. Following exposure to a disease relevant challenge (oxidative stress), PAR2 activation with trypsin (10 U ml⁻¹), was observed to induce a higher relaxation in airway segments pre-contracted with acetylcholine (1 µM) using wire myography. Specifically, tracheal segments subjected to oxidative stress showed a significantly higher percentage relaxation (mean ± SEM; 53.8%±10.3%) compared with control (30.8%±7.9%; p=0.05; n=4). A higher percentage relaxation was also observed in bronchial segments (oxidative 55.1%±10.7% vs. control 33.9%±1.2%; p=0.07; n=4). The trypsin-induced relaxation was confirmed to be PAR2-dependent since relaxation to trypsin was significantly reduced in tracheal and bronchial tissue derived from PAR2-knockout mice.

Taken together this data confirms that PAR2 is present and suggests the receptor contributes functionally to the modulation of ASM tone in mice.

To be eligible for the Graduate student or Post-doc competitions, entrants must provide evidence they are registered for a Higher degree, or within 5 years (or PTE) of their doctoral degree, and must submit a short C.V. along with their abstract.

Notes to authors:

Content
- A descriptive title and list of authors
- Introduction to the study
- Methods
- Results, including data
- Conclusions

Format
- Be 10-point Arial font
- Be no more than 250 words
- Have their title in full capital letters
- Have the presenting author’s name underlined.

Abstracts should be emailed to Andrew Savage (ads85@medschl.cam.ac.uk) by 17.00h on Friday 5 July, 2019.