
Programmable Address Spaces
Systems Seminar - University of Glasgow

Dr. Paul Keir, Andrew Gozillon

School of Engineering and Computing
University of the West of Scotland, Paisley Campus

March 15th, 2017

Overview

I Address Spaces in Hardware & Software

I Compiler Support

I Involving C++ Templates

I Testing with OpenCL

I Conclusion

GPGPU Thread Hierarchy

I Single Instruction Multiple Threads (SIMT)
I Memory latency is mitigated by

I launching many threads in lock-step; and
I switching warps/wavefronts whenever an operand isn’t ready.

Image http://cuda.ce.rit.edu/cuda_overview/cuda_overview.htm

http://cuda.ce.rit.edu/cuda_overview/cuda_overview.htm

GPGPU Memory Hierarchy

I Registers and local memory are unique to a thread

I Shared memory is unique to a block

I Global, constant, and texture memories exist across all blocks

I The scope of these disjoint memory banks is shown below

I 2 threads execute in each of 2 blocks (4 threads):

Image http://cuda.ce.rit.edu/cuda_overview/cuda_overview.htm

http://cuda.ce.rit.edu/cuda_overview/cuda_overview.htm

Address Space Qualifiers

I Simple processors employed in large numbers

I Hardware and also software caching is routinely absent

I Memory banks are abstracted by address space qualifiers
I OpenCL C recognises 4 disjoint address spaces:

I Global, constant, local and private
I An array declared in fast, shared, on-chip memory:
I __local float x[10];

Cell Broadband Engine Architecture (2000)

I In addition to the main memory of the PPU host

I 256 KB of fast local memory was available to each SPU

Image http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/cellengine/

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/cellengine/

Accessing PPU variables from SPU programs

I IBM XL C/C++ provided PPE address space support on SPE

I Effective address space support, with a software cache

I The __ea type qualifier was provided as an extension

extern int __ea i;

I Indicates that the variable being declared in SPU code,

already exists in the PPE address space

A pointer in PPU address space pointing to PPU address space:

extern __ea int* __ea p;

Dynamic memory allocation was also available from the SPU:

{

__ea int *p = malloc_ea(sizeof(int));

}

Accessing PPU variables from SPU programs

I IBM XL C/C++ provided PPE address space support on SPE

I Effective address space support, with a software cache

I The __ea type qualifier was provided as an extension

extern int __ea i;

I Indicates that the variable being declared in SPU code,

already exists in the PPE address space

A pointer in PPU address space pointing to PPU address space:

extern __ea int* __ea p;

Dynamic memory allocation was also available from the SPU:

{

__ea int *p = malloc_ea(sizeof(int));

}

Accessing PPU variables from SPU programs

I IBM XL C/C++ provided PPE address space support on SPE

I Effective address space support, with a software cache

I The __ea type qualifier was provided as an extension

extern int __ea i;

I Indicates that the variable being declared in SPU code,

already exists in the PPE address space

A pointer in PPU address space pointing to PPU address space:

extern __ea int* __ea p;

Dynamic memory allocation was also available from the SPU:

{

__ea int *p = malloc_ea(sizeof(int));

}

Duplicated Effort

Many recent SDKs support multiple address space programming

For example, the compilers which implement:

I NVIDIA CUDA

I OpenCL C/C++ (and Apple’s Metal)

I Microsoft C++ AMP

I HSA IL

Could this be within the language, rather than ad-hoc extensions?

Embedded C

I Published as a technical report: ISO/IEC TR 18037

I “C - Extensions to support embedded processors”

I For microcontroller based applications with limited resources

I Implemented in the Keil compiler

I Supports named address spaces

I C type qualifiers can now include an address space name
I Implementations may provide a set of intrinsic address spaces

I Such names should be reserved; i.e start with [A-Z]|

I One address space may be a subset of another

“The most significant constraint is that an address space name cannot be used

to qualify an object that has automatic storage duration.”

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1275.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1275.pdf

Embedded C

I Published as a technical report: ISO/IEC TR 18037

I “C - Extensions to support embedded processors”

I For microcontroller based applications with limited resources

I Implemented in the Keil compiler

I Supports named address spaces

I C type qualifiers can now include an address space name
I Implementations may provide a set of intrinsic address spaces

I Such names should be reserved; i.e start with [A-Z]|

I One address space may be a subset of another

“The most significant constraint is that an address space name cannot be used

to qualify an object that has automatic storage duration.”

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1275.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1275.pdf

GCC support for Address Spaces

I GNU C supports named address spaces as an extension

I As defined in ISO/IEC DTR 18037 (i.e. Embedded C)

I Support is configured for only particular compile targets

I Adoptive targets include AVR, SPU, M32C, RL78, and x86

I On x86 GCC will compile this as C code with no switches:

__seg_fs int g;

__seg_gs int *p;

I Internal to GCC, a target may call c_register_addr_space

I The SPU port uses the following to declare __ea with AS #1

#define ADDR_SPACE_EA 1

c_register_addr_space ("__ea", ADDR_SPACE_EA);

GCC support for Address Spaces

I GNU C supports named address spaces as an extension

I As defined in ISO/IEC DTR 18037 (i.e. Embedded C)

I Support is configured for only particular compile targets

I Adoptive targets include AVR, SPU, M32C, RL78, and x86

I On x86 GCC will compile this as C code with no switches:

__seg_fs int g;

__seg_gs int *p;

I Internal to GCC, a target may call c_register_addr_space

I The SPU port uses the following to declare __ea with AS #1

#define ADDR_SPACE_EA 1

c_register_addr_space ("__ea", ADDR_SPACE_EA);

LLVM support for Address Spaces

I LLVM supports numbered address spaces

I The default address space is zero

I Clang syntax builds on the GCC __attribute__ keyword

I Unlike GCC, Clang supports both C and C++ input languages

I Functionality provides Clang compiler support for OpenCL C
I Similar restrictions apply as with GCC’s named address spaces

I ...though with less documentation

#define __seg_fs __attribute__ ((address_space (1)))

#define __seg_gs __attribute__ ((address_space (2)))

__seg_fs int g;

__seg_gs int *p;

C++ Templates

How about:

template <int N>

void foo() {

__attribute__ ((address_space(N))) int *p;

}

or:

template <int N>

struct bar {

__attribute__ ((address_space(N))) int *p;

};

I Non-type (integral) template parameters
I To align with SFINAE metaprogramming; or C++ Concepts
I Significantly more expressive...but non-standard
I “Embedded C++” is non (ISO) standard, with no templates
I Similar interface consideration within Codeplay’s Offload C++

C++ Templates

How about:

template <int N>

void foo() {

__attribute__ ((address_space(N))) int *p;

}

or:

template <int N>

struct bar {

__attribute__ ((address_space(N))) int *p;

};

I Non-type (integral) template parameters
I To align with SFINAE metaprogramming; or C++ Concepts
I Significantly more expressive...but non-standard
I “Embedded C++” is non (ISO) standard, with no templates
I Similar interface consideration within Codeplay’s Offload C++

C++ Templates

How about:

template <int N>

void foo() {

__attribute__ ((address_space(N))) int *p;

}

or:

template <int N>

struct bar {

__attribute__ ((address_space(N))) int *p;

};

I Non-type (integral) template parameters
I To align with SFINAE metaprogramming; or C++ Concepts
I Significantly more expressive...but non-standard

I “Embedded C++” is non (ISO) standard, with no templates
I Similar interface consideration within Codeplay’s Offload C++

C++ Templates

How about:

template <int N>

void foo() {

__attribute__ ((address_space(N))) int *p;

}

or:

template <int N>

struct bar {

__attribute__ ((address_space(N))) int *p;

};

I Non-type (integral) template parameters
I To align with SFINAE metaprogramming; or C++ Concepts
I Significantly more expressive...but non-standard
I “Embedded C++” is non (ISO) standard, with no templates
I Similar interface consideration within Codeplay’s Offload C++

A C++ Address Space Container

A few design options present themselves:

1. A new smart pointer, with expected operator overloads

template <int N>

void zod(as_ptr <int,N> as_i) { *as_i = 12345; }

2. An extra template parameter to an existing C++ smart
pointer

3. Rather than scalars, augment containers; such as std::vector

4. C++ containers use std::allocator; so, extend here

Choices, choices, choices...

Ultimately, this is type level information. Use type traits...

A C++ Address Space Container

A few design options present themselves:

1. A new smart pointer, with expected operator overloads

template <int N>

void zod(as_ptr <int,N> as_i) { *as_i = 12345; }

2. An extra template parameter to an existing C++ smart
pointer

3. Rather than scalars, augment containers; such as std::vector

4. C++ containers use std::allocator; so, extend here

Choices, choices, choices...

Ultimately, this is type level information. Use type traits...

A Type Trait API for Address Spaces

I Define an address space trait class template; say as_trait

I We need not concern ourselves with the definition

I Akin to C++17 structured bindings’ use of tuple_element

I as_trait<int *>::address_space equals zero

I No address space language extension exposed to the user

template <typename T, typename U>

void zot(T p1 , U p2) {

const auto value1 = as_trait <T>:: address_space;

const auto value2 = as_trait <U>:: address_space;

using type1 = typename as_trait <T>:: type;

using type2 = typename as_trait <T>:: type;

static_assert(value1 == value2);

static_assert(std::is_same_v <type1 ,type2 >);

*p1 = *p2;

}

Validation

I The as_trait type trait has potential

I A formal proposal based on it could be prepared

I But we would like to validate the system with a real target

I A problem comes from Clang:

template <int N>

void foo() {

__attribute__ ((address_space(N))) int *p;

}

test.cpp:3:39: error: address space attribute requires an

integer constant

I The integer value is dependent on a template parameter

I When the prototype is generated, there is no integer

I Nothing in place to allow later reassessment upon instantiation

Validation

I The as_trait type trait has potential

I A formal proposal based on it could be prepared

I But we would like to validate the system with a real target

I A problem comes from Clang:

template <int N>

void foo() {

__attribute__ ((address_space(N))) int *p;

}

test.cpp:3:39: error: address space attribute requires an

integer constant

I The integer value is dependent on a template parameter

I When the prototype is generated, there is no integer

I Nothing in place to allow later reassessment upon instantiation

Validation

I The as_trait type trait has potential

I A formal proposal based on it could be prepared

I But we would like to validate the system with a real target

I A problem comes from Clang:

template <int N>

void foo() {

__attribute__ ((address_space(N))) int *p;

}

test.cpp:3:39: error: address space attribute requires an

integer constant

I The integer value is dependent on a template parameter

I When the prototype is generated, there is no integer

I Nothing in place to allow later reassessment upon instantiation

LLVM Proposal: ext address space

I A new type attribute: ext_address_space

I A drop in replacement for LLVM’s address_space

I Accommodates integral non-type template parameters

I As LLVM code for the type attribute: ext_vector_type

I ...ext_address_space similarly extends address_space

I ...to allow template-dependent int values to be used

Testing with OpenCL

I OpenCL C uses address spaces and is supported by Clang

I However, OpenCL 2.1 is not yet supported: no templates
I Tobias Zirr (Alpha New) presents a Khronos patched solution

I The compiler sets the C++ flag when compiling OpenCL C
I Then passes the output to a Khronos LLVM ↔ SPIR converter
I With further merges and patches we can now execute the

following as SPIRV

OpenCL with C++

template <typename T>

T add(T a, T b)

{

return a+b;

}

__kernel void vec_op(__global const float *,

__global const float *,

__global const float *)

asm("vec_op");

__kernel void vec_op(__global const float *a,

__global const float *b,

__global const float *c)

{

int i = get_global_id (0);

c[i] = add <float >(a[i],b[i]);

}

The asm("vec_op") prevents the name being mangled, and sets it to “vec op”

OpenCL with C++

template <typename T>

T add(T a, T b)

{

return a+b;

}

__kernel void vec_op(__global const float *,

__global const float *,

__global const float *)

asm("vec_op");

__kernel void vec_op(__global const float *a,

__global const float *b,

__global const float *c)

{

int i = get_global_id (0);

c[i] = add <float >(a[i],b[i]);

}

The asm("vec_op") prevents the name being mangled, and sets it to “vec op”

Our Repositories

Conclusion

I Minimal LLVM compiler modifications to implement and
explore dependent address space API design

I Complete the C++ type traits API and test within OpenCL

I Look into integration with the C++ Concepts proposal

I Explore further (SFINAE) template abstractions

I Propose to the BSI ISO-C++ Panel
I Could other (e.g. function) attributes fit within templates?

I e.g. GCC’s target(arch=ARCH)

I HPC Clusters? PGAS languages?

