The genus Micromonospora as a model microorganism for bioactive natural product discovery

Hifnawy, Mohamed S.; Fouda, Mohamed M.; Sayed, Ahmed M.; Mohammed, Rabab; Hassan, Hossam M.; AbouZid, Sameh F.; Rateb, Mostafa E.; Keller, Alexander; Adamek, Martina; Ziemert, Nadine; Abdelmohsen, Usama Ramadan

Published in:
RSC Advances

DOI:
10.1039/D0RA04025H

Published: 08/06/2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 10 Nov 2021
The genus *Micromonospora* as a model microorganism for bioactive natural products discovery

Mohamed S. Hifnawy1, Mohamed M. Fouda2, Ahmed M. Sayed2, Rabab Mohammed3, Hossam M. Hassan3, Sameh F. AbouZid3, Mostafa E. Rateb3,4, Alexander Keller5, Martina Adamek6,7, Nadine Ziemert6,7,*, and Usama Ramadan Abdelmohsen8,9,*.

1Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt 11787
2Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt 62513
3Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt 62514
4School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
5Center for Computational and Theoretical Biology, Biocenter, University of Würzburg, Hubland Nord, 97074 Würzburg, Germany
6Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
7German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
8Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
9Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111 New Minia City, 61519 Minia

*Correspondence: usama.ramadan@mu.edu.eg (URA);
nadine.ziemert@uni-tuebingen.de (NZ)
Figure S1: *Micromonospora* - Biosynthetic Gene Cluster Similarity Networks of “Others” BGCs.
Gene cluster similarity networks of PKS- BGCs generated with BiG-SCAPE from 87 *Micromonospora* genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
Figure S2: *Micromonospora* - Biosynthetic Gene Cluster Similarity Networks of “PKS I” BGCs

Gene cluster similarity networks of PKS-BGCs generated with BiG-SCAPE from 87 *Micromonospora* genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
Figure S3: *Micromonospora* - Biosynthetic Gene Cluster Similarity Networks of “Saccharides” BGCs

Gene cluster similarity networks of PKS- BGCs generated with BiG-SCAPE from 87 *Micromonospora* genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
Figure S4: Micromonospora - Biosynthetic Gene Cluster Similarity Networks of “other polyketides” BGCs

Gene cluster similarity networks of PKS- BGCs generated with BiG-SCAPE from 87 Micromonospora genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
Figure S5: *Micromonospora* - Biosynthetic Gene Cluster Similarity Networks of “PKS-NRPS Hybrids” BGCs

Gene cluster similarity networks of PKS-BGCs generated with BiG-SCAPE from 87 *Micromonospora* genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
Figure S6: *Micromonospora* - Biosynthetic Gene Cluster Similarity Networks of “NRPS” BGCs

Gene cluster similarity networks of PKS- BGCs generated with BiG-SCAPE from 87 *Micromonospora* genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
Figure S7: *Micromonospora* - Biosynthetic Gene Cluster Similarity Networks of “Terpene” BGCs

Gene cluster similarity networks of PKS- BGCs generated with BiG-SCAPE from 87 *Micromonospora* genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
Figure S8: *Micromonospora* - Biosynthetic Gene Cluster Similarity Networks of “RiPPs” BGCs

Gene cluster similarity networks of PKS- BGCs generated with BiG-SCAPE from 87 *Micromonospora* genomes. Gene clusters were identified and classified using antiSMASH. Each node represents one sequenced gene cluster. Connected clusters likely encode for similar compounds. To identify already known and characterized BGCs, the dataset from the MIBiG database was added to the network analysis. MIBiG compounds are circled in red.
<table>
<thead>
<tr>
<th>Compounds</th>
<th>Class</th>
<th>Microbe</th>
<th>Source</th>
<th>Year</th>
<th>Activity</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paromamine (1)</td>
<td>Aminoglycoside</td>
<td>Minor component of the gentamicin</td>
<td>Soil</td>
<td>1959</td>
<td>Weakly active against Gram-positive</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>complex prod. by Micromonospora</td>
<td></td>
<td></td>
<td>bacteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>spp</td>
<td></td>
<td></td>
<td>Important intermed. for semisynthetic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aminoglycoside</td>
<td></td>
</tr>
<tr>
<td>Gentamicins (2)</td>
<td>Aminoglycoside</td>
<td>M. echinospora NRRL 2953</td>
<td>Soil</td>
<td>1963</td>
<td>Antibacterial</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. echinospora NRRL 2985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic 460 (3)</td>
<td>Aminoglycoside</td>
<td>M. chalcea subsp. flavida NRRL 3222</td>
<td>Soil</td>
<td>1969</td>
<td>Antibacterial</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIC (2.5-7.5 µg/ml) Gram positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bacteria</td>
<td></td>
</tr>
<tr>
<td>6640 (sisomicin) (4)</td>
<td>Aminoglycoside</td>
<td>M. inyoensis NRRL 3292</td>
<td>Soil</td>
<td>1970</td>
<td>Antibacterial</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>activity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIC values ranged from (0.01-7.5 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>Gentamine C₁ (5)</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>Soil</td>
<td>1971</td>
<td>Active mainly against Gram-positive</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bacteria</td>
<td></td>
</tr>
<tr>
<td>Neomycin B (6)</td>
<td>Aminoglycoside</td>
<td>M. chalcea 69-683</td>
<td>----</td>
<td>1971</td>
<td>Antibacterial</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>activity</td>
<td></td>
</tr>
<tr>
<td>Antibiotic G-418 (7)</td>
<td>Aminoglycoside</td>
<td>M. echinospora NRRL 5326</td>
<td>Soil</td>
<td>1974</td>
<td>Antibacterial</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>with MIC values (16-64µg/ml)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antiparasitic activity</td>
<td></td>
</tr>
<tr>
<td>Mutamicins (8)</td>
<td>Aminoglycoside</td>
<td>M. inyoensis NRRL 3292</td>
<td>Soil</td>
<td>1974</td>
<td>Antibacterial activity MIC (0.08-3 µg/ml).</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Sagamicin (9) (XK-62-2)</td>
<td>Aminoglycoside</td>
<td>M. sagamiensis subsp. nonreducans ATCC 21803, M. sagamiensis ATCC 21826</td>
<td>Soil</td>
<td>1974</td>
<td>Antibacterial activity MIC (0.001-8.3 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>Verdamicin (10)</td>
<td>Aminoglycoside</td>
<td>M. grisea NRRL 3800</td>
<td>Soil</td>
<td>1974</td>
<td>Antibacterial activity. MIC (0.5-8 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>Gentamicin 2b (11)</td>
<td>Aminoglycoside</td>
<td>M. sagamiensis</td>
<td>Soil</td>
<td>1975</td>
<td>Antibacterial less ototoxic and nephrotoxic than Gentamicin C complex</td>
<td></td>
</tr>
<tr>
<td>Antibiotic G-52 (12)</td>
<td>Aminoglycoside</td>
<td>M. zionensis NRRL 5466</td>
<td>Soil</td>
<td>1976</td>
<td>Antibacterial activity for gram positive and gram negative bacteria with IC₅₀ 0.01-17.5 µg/ml and 0.03-7.5 µg/ml respectively</td>
<td></td>
</tr>
<tr>
<td>Antibiotic 66-40B Sisomicin B (13)</td>
<td>Aminoglycoside</td>
<td>Minor prod. from M. inyoensis</td>
<td>Soil</td>
<td>1976</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td>Antibiotic 66-40D Sisomicin D (14)</td>
<td>Aminoglycoside</td>
<td>Minor prod. from M. inyoensis</td>
<td>Soil</td>
<td>1976</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td>Destomycin B C₂₁H₂₁H₃</td>
<td>Aminoglycoside</td>
<td>M. cyaneogranulata</td>
<td>Soil</td>
<td>1976</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin A (16)</td>
<td>Aminoglycoside</td>
<td>Micromonospora spp</td>
<td>1976</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin B,B1 (17,18)</td>
<td>Aminoglycoside</td>
<td>Micromonospora spp</td>
<td>1976</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin C₁,C₁a (19,20)</td>
<td>Aminoglycoside</td>
<td>M. purpurea, M. echinospora, M. sagamiensis, M. scabitana, M. longisporoflavus</td>
<td>1976</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin C₂a (21)</td>
<td>Aminoglycoside</td>
<td>M. purpurea and M. sagamiensis</td>
<td>1976</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin X₂ (22)</td>
<td>Aminoglycoside</td>
<td>M. purpurea and M. echinospora</td>
<td>1976</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentoximicin B (23)</td>
<td>Aminoglycoside</td>
<td>M. purpurea</td>
<td>1976</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortimicins A and B (24,25)</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora ATCC 21819</td>
<td>1976</td>
<td>Antibacterial against gram positive with MIC (0.2-10µg/ml) and negative bacteria (0.08-5µg/ml) for fortimicin A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic I1 (26)</td>
<td>Aminoglycoside</td>
<td>M. purpurea</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic 66-40C (27)</td>
<td>Dimeric aminoglycoside antibiotic</td>
<td>M. inyoensis</td>
<td>1977</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic Y 02077H₀ 3'-N-</td>
<td>Aminoglycoside</td>
<td>M. purpurea and Micromonospora</td>
<td>1977</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Demethylgentamicin C₂</td>
<td>Aminoglycoside</td>
<td>Micromonospora cultures. Component of Sisomicin.</td>
<td>1977</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garamine (29)</td>
<td>Aminoglycoside</td>
<td>M. purpurea and M. echinospora</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin A₁,A₂,A₃,A₄</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamine C₁</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamine C₁a</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamine C₂</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4''-Demethylgentamicin C₂</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4''-Demethylgentamicin C₁a</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6''-Methylgentamicin A</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6''-Methylgentamicin A₁</td>
<td>Aminoglycoside</td>
<td>M. purpurea-nigrescens</td>
<td>1977</td>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic</td>
<td>Type</td>
<td>organism</td>
<td>source</td>
<td>year</td>
<td>Activity Details</td>
<td>literature</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>--------</td>
<td>------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>3''-N-Demethylsisomicin Antibiotic 66-40G</td>
<td>Aminoglycoside</td>
<td>M. inyoensis and M. sagamiensis</td>
<td>Soil</td>
<td>1978</td>
<td>Antibacterial</td>
<td>(42)</td>
</tr>
<tr>
<td>Fortimicin D (44)</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1979</td>
<td>Antibacterial</td>
<td>(43)</td>
</tr>
<tr>
<td>Fortimicin KE</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1979</td>
<td>Weak antibacterial</td>
<td></td>
</tr>
<tr>
<td>Antibiotic X 14847(46)</td>
<td>Aminoglycoside</td>
<td>M. echinospora</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial Active against gram positive bacteria</td>
<td></td>
</tr>
<tr>
<td>Fortimicin E (47)</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>Weak antibacterial</td>
<td>(44)</td>
</tr>
<tr>
<td>Fortimicin KO1</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial</td>
<td>(45)</td>
</tr>
<tr>
<td>Fortimicin AE</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial</td>
<td>(46)</td>
</tr>
<tr>
<td>Fortimicin AP(50)</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial</td>
<td>(47)</td>
</tr>
<tr>
<td>Fortimicin AM(51)</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial</td>
<td>(48-49)</td>
</tr>
<tr>
<td>Fortimicin AH</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial</td>
<td>(49)</td>
</tr>
<tr>
<td>Fortimicin AI</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial</td>
<td>(50)</td>
</tr>
<tr>
<td>Fortimicin AK (54)</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>NA</td>
<td>(51)</td>
</tr>
<tr>
<td>Fortimicin AO (55)</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>NA</td>
<td>(52,53)</td>
</tr>
<tr>
<td>O-Demethylfortimicin A</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1980</td>
<td>NA</td>
<td>(54)</td>
</tr>
<tr>
<td>2'N-Glycylfortimicin KE</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>soil</td>
<td>1981</td>
<td>NA</td>
<td>(55)</td>
</tr>
<tr>
<td>Antibiotic SU1,SU2,SU3,SU4 (56-61)</td>
<td>Aminoglycoside</td>
<td>M. sagamiensis</td>
<td>Soil</td>
<td>1982</td>
<td>antibacterial against gentamicin resistant strains</td>
<td>(57)</td>
</tr>
<tr>
<td>2-Hydroxysagamicin (62)</td>
<td>Aminoglycoside</td>
<td>M. sagamiensis and M. purpurea</td>
<td>Soil</td>
<td>1982</td>
<td>Antibacterial</td>
<td>(58-61)</td>
</tr>
<tr>
<td>6'-N-Methylverdamicin (63)</td>
<td>Aminoglycoside</td>
<td>Prod. from Verdamicin by a Verdamicin</td>
<td>Soil</td>
<td>1982</td>
<td>Antibacterial</td>
<td>(62)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibiotic Name</th>
<th>Type</th>
<th>Producing Organism</th>
<th>Isolation Source</th>
<th>Year</th>
<th>Activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Deoxygentamicin C_{2b}</td>
<td>Aminoglycoside</td>
<td>M. purpurea</td>
<td>Soil</td>
<td>1983</td>
<td>Antibacterial</td>
<td>US Pat., 1983, 412 068</td>
</tr>
<tr>
<td>Antibiotic FU 10</td>
<td>Aminoglycoside</td>
<td>M. olivoasterospora</td>
<td>Soil</td>
<td>1984</td>
<td>Weak antibacterial</td>
<td>30</td>
</tr>
<tr>
<td>Fortimicin KK</td>
<td>Aminoglycoside</td>
<td>Micromonospora olivoasterospora</td>
<td>Soil</td>
<td>1984</td>
<td>Antibacterial</td>
<td>31</td>
</tr>
<tr>
<td>Fortimicin KL1</td>
<td>Aminoglycoside</td>
<td>Micromonospora olivoasterospora</td>
<td>Soil</td>
<td>1984</td>
<td>Antibacterial</td>
<td>31</td>
</tr>
<tr>
<td>Vertilmicin</td>
<td>Aminoglycoside</td>
<td>Semisynthetic, prod. by Micromonospora sp</td>
<td>Soil</td>
<td>1987</td>
<td>Antibacterial</td>
<td>32</td>
</tr>
<tr>
<td>Calicheamicins</td>
<td>Aminoglycosidic antibiotic complex.</td>
<td>*M. echinospora ssp. calichensis NRRL 15839</td>
<td>Soil</td>
<td>1989</td>
<td>Antineoplastic agent</td>
<td>33</td>
</tr>
<tr>
<td>Antibiotic Sch 58777</td>
<td>Aminoglycoside</td>
<td>M. carbonacea var. africana</td>
<td>Soil</td>
<td>1997</td>
<td>Antibacterial</td>
<td>34</td>
</tr>
<tr>
<td>Orthosomycin J</td>
<td>Aminoglycoside</td>
<td>Micromonospora olivoasterospora</td>
<td>Sponge</td>
<td>2010</td>
<td>Antibacterial</td>
<td>35</td>
</tr>
<tr>
<td>Primycin, Debrycin, Ebrimycin</td>
<td>Macrolide complex</td>
<td>M. galeriensis</td>
<td>Soil</td>
<td>1954</td>
<td>Potent ionophore. Active against Gram-positive bacteria and mycobacteria. Antifungal agent</td>
<td>36</td>
</tr>
<tr>
<td>Antibiotic</td>
<td>Antimicrobial Activity</td>
<td>MIC Range</td>
<td>Strain/Source</td>
<td>Year</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| Megalomicins A,B,C
(75-78) | Antibacterial | A (0.075 -1.2 µg/ml)
B ((0.005-5 µg/m).)
C1 (0.003-1.2µg/ml).
C2 ((0.0005-0.6 µg/ml).)
Antiviral C1
Antiparasite (IC$_{50}$ 0.2, 1, 2, 3, and 8 µg/mL) A1. | M. megalomicea subsp. megalomicea NRRL 3274
M. megalomicea subsp. nigra NRRL 3275 | 1969 | |
| Rosamicin (79) | Antibacterial | Gram positive with MIC 0.03-3 µg/ml and Gram negative bacteria with MIC ranged from (0.3-7.5 µg/ml). | M. rosaria | 1972 | |
| Antibiotic XK 41B2
(80) | Antibacterial | NA | M. inositola | 1974 | |
| Juvenimicins A$_2$A$_3$A$_4$B$_1$B$_3$
(81-85) | Antibacterial | Gram +ve MIC (0.01- 100µg/ml)
Gram –ve MIC (5->100 µg/ml) | M.chalcea var. izumensis | 1976 | |
| Antibiotic M 4365G1
(86) | Antibacterial | Active against gram positive bacteria | M. capillata | 1977 | |
<table>
<thead>
<tr>
<th>Repromicin
Antibiotic M 4365G2
(87)</th>
<th>Macrolide</th>
<th>M. capillata and M. rosari</th>
<th>Soil</th>
<th>1978</th>
<th>Antibacterial
Active against gram positive bacteria</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antlermicin B
(88,89)</td>
<td>Macrolide</td>
<td>M. chalcea-kazunoensis sp. T-90.</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial
Antitumor</td>
<td>44</td>
</tr>
<tr>
<td>Antlermicin C
(88,89)</td>
<td>Macrolide</td>
<td>M. griseorubida A11725</td>
<td>Soil</td>
<td>1980</td>
<td>Active against gram positive bacteria,
Haemophilus influenzae and mycoplasmas
(MIC 0.1 – 3.12 µg/mL)</td>
<td>45</td>
</tr>
<tr>
<td>Mycinamycin I,II,III,IV,V
(90-94)</td>
<td>Macrolide</td>
<td>M. rosaria</td>
<td>Soil</td>
<td>1980</td>
<td>Biosynth. precursor to Tylonolide.</td>
<td>46</td>
</tr>
<tr>
<td>Protylonolide
(95)</td>
<td>Macrolide</td>
<td>M. rosaria</td>
<td>Soil</td>
<td>1980</td>
<td>Prob. intermed. in biosynth. of Rosamicin</td>
<td>47</td>
</tr>
<tr>
<td>20-Deoxorosaranolide
(96)</td>
<td>Macrolide</td>
<td>M. rosaria</td>
<td>Soil</td>
<td>1982</td>
<td>Antibacterial</td>
<td>48</td>
</tr>
<tr>
<td>Lipiarmycin A₃
(97)</td>
<td>Macrolide</td>
<td>M. echinospora ssp. armeniaca</td>
<td>Soil</td>
<td>1983</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>23-Hydroxyprotylonolide
(98)</td>
<td>Macrolide</td>
<td>Micromonospora sp. YS-02930K</td>
<td>Soil</td>
<td>1983</td>
<td>NA</td>
<td>49</td>
</tr>
<tr>
<td>19,23-Dihydroxyprotylonolide
(99)</td>
<td>Macrolide</td>
<td>Micromonospora sp. YS-02930K</td>
<td>Soil</td>
<td>1983</td>
<td>NA</td>
<td>49</td>
</tr>
<tr>
<td>Neorustmicin A
(100)</td>
<td>Macrolide</td>
<td>M. chalcea 1302-AV</td>
<td>Soil</td>
<td>1985</td>
<td>Antifungal, MIC (0.2-0.4µg/ml).</td>
<td>50</td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Species</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Rustmicin</td>
<td>Macrolide</td>
<td>M. narashinoensis 980-MC.</td>
<td>Soil</td>
<td>1985</td>
<td>Antifungal MIC (0.8-1µg/ml).</td>
<td></td>
</tr>
<tr>
<td>Galbonolide A</td>
<td>Macrolide</td>
<td>M. narashinoensis and M. chalcea</td>
<td>Soil</td>
<td>1985</td>
<td>Antifungal</td>
<td></td>
</tr>
<tr>
<td>Clostomicins A, B₁, B₂, C, D</td>
<td>Macrolide</td>
<td>M. echinospora subsp. armeniaca KMR-593</td>
<td>Soil</td>
<td>1986</td>
<td>Antibacterial Diameter of inhibition zone (mm) (10.2 – 36.8).</td>
<td></td>
</tr>
<tr>
<td>Neorustmicin B,C,D</td>
<td>Macrolide</td>
<td>M. chalcea 1302-AV</td>
<td>Soil</td>
<td>1986</td>
<td>Neorustmicin B 1.0 µg/ml While, neorustmicins C and D 4 and 5 µg/ml, respectively</td>
<td></td>
</tr>
<tr>
<td>Lipiarmycin B₃</td>
<td>Macrolide</td>
<td>M. echinospora</td>
<td>Soil</td>
<td>1988</td>
<td>Antibacterial Active against gram positive bacteria</td>
<td></td>
</tr>
<tr>
<td>Izenamicin B₂</td>
<td>Macrolide</td>
<td>Micromonas pora sp</td>
<td>Soil</td>
<td>1989</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td>Antibiotic 6108A₁</td>
<td>Macrolide</td>
<td>M. fastidiosus</td>
<td>Soil</td>
<td>1990</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>(116)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibiotic 6108 A₁, B (117,118)</th>
<th>Macrolide</th>
<th>Micromonospora strain BA06108</th>
<th>Soil</th>
<th>1990</th>
<th>Antibacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibiotic 6108C (119)</th>
<th>Macrolide antibiotic (unusual Tylosin-type)</th>
<th>M. Pora fastidiosa</th>
<th>Soil</th>
<th>1990</th>
<th>Antibacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibiotic 6108D (120)</th>
<th>Macrolide antibiotic (unusual Tylosin-type)</th>
<th>M. Pora fastidiosa</th>
<th>Soil</th>
<th>1990</th>
<th>Antibacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rosamicin; 6-Hydroxy (121)</th>
<th>Macrolide</th>
<th>M. rosaria</th>
<th>Soil</th>
<th>1990</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mycinamycin X, XI (122,123)</th>
<th>Macrolide</th>
<th>M. griseorubida</th>
<th>Soil</th>
<th>1991</th>
<th>Antibacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mycinamycin IX, XII, XIII, XIV, XV, XVI, XVII, XVIII (124-131)</th>
<th>Macrolide</th>
<th>M. griseorubida</th>
<th>Soil</th>
<th>1991</th>
<th>Antibacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC6H (132)</th>
<th>Macrolide</th>
<th>M. carbonacea subsp. carbonacea K55-AC6</th>
<th>Soil</th>
<th>1993</th>
<th>Anticancer IC 50 (6.25-25 µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spirotetronate glycoside.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quinolidomicins A₁, A₂, and B₁ (133-135)</th>
<th>Polyene macrolides</th>
<th>Micromonospora sp. JY16 - FERM BP-3940</th>
<th>Soil</th>
<th>1993</th>
<th>Antitumor IC₅₀ 327nM/ml.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>19-Decarbonyltylonolide</td>
<td>Macrolide</td>
<td>Micromonospora sp. YS 02930k</td>
<td>1994</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>16-Hydroxyprotylonolide</td>
<td>Macrolide</td>
<td>Micromonospora sp. YS-02930K</td>
<td>1994</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>19-Hydroxyprotylonolide</td>
<td>Macrolide</td>
<td>Micromonospora sp. YS-02930K</td>
<td>1994</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Royamicin A</td>
<td>Macrolide</td>
<td>M. roseopurpurea M90</td>
<td>1994</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td>Pyrrolosporin A</td>
<td>Macrolide</td>
<td>Micromonospora sp. ATCC 53791</td>
<td>1996</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gram positive MIC (0.5 - 4 µg/ml)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gram negative MIC (63-125µg/ml)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antitumor</td>
<td></td>
</tr>
<tr>
<td>Galbonolide B, 21-hydroxy</td>
<td>Macrolide</td>
<td>Micromonospora sp. culture MA</td>
<td>1998</td>
<td>Moderate antifungal activity</td>
<td></td>
</tr>
<tr>
<td>Rustmicin, 21-hydroxy</td>
<td>Macrolide</td>
<td>Micromonospora sp. culture MA</td>
<td>1998</td>
<td>Antifungal activity less than rustamicin</td>
<td></td>
</tr>
<tr>
<td>Antibiotic IB 96212</td>
<td>Macrolide</td>
<td>Micromonospora sp.</td>
<td>2000</td>
<td>Cytotoxic</td>
<td></td>
</tr>
<tr>
<td>Sch 351448</td>
<td>Macrolide</td>
<td>Micromonospora sp</td>
<td>2000</td>
<td>A novel ionophoric compound and is a weak activator of low density</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Bafilomycin R 176502</td>
<td>Antibiotic R 176502 (148)</td>
<td>Micromonospora sp.</td>
<td>2003</td>
<td>Cytotoxic</td>
<td></td>
</tr>
<tr>
<td>Micromonosporin A (149)</td>
<td>Macrolide</td>
<td>Micromonospora sp. (strain TT1-11).</td>
<td>2004</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>IZI (150)</td>
<td>Macrolide</td>
<td>M. rosara</td>
<td>2009</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>IZII,IZIII (151,152)</td>
<td>Macrolides</td>
<td>M. rosara</td>
<td>2010</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>levantilide A and B (153,154)</td>
<td>Macrolides</td>
<td>Micromonospora strain M71-A77</td>
<td>2011</td>
<td>Anticancer against gastric tumor cells GXF 251L (IC${50}$ 40.9 µM), lung tumor cells LXFL 529L (IC${50}$ 39.4 µM), mammary tumor cells MAXF 401NL (IC$_{50}$ 28.3 µM)</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Strain</td>
<td>Source</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Levantilide C (156)</td>
<td>Macrolide</td>
<td>Micromonospora sp. FIM07-0019</td>
<td>Marine</td>
<td>2013</td>
<td></td>
</tr>
</tbody>
</table>

µM, melanoma tumor cells MEXF 462NL (IC$_{50}$ 48.6 µM), pancreas tumor cells PAXF 1657L (IC$_{50}$ 20.7 µM) and renal tumor cells RXF 486L (IC$_{50}$ 52.4 µM).

Antioxidant enhanced QR1 enzyme activity and glutathione levels by two-fold with CD values of 10.1 and 27.7 µM, respectively.

QR1 (quinon reductase 1)

Anticancer

Against HL-60 (IC$_{50}$ 32.5 µM), MDA-MB-231 (IC$_{50}$ 26.8 µM), SW620 (IC$_{50}$ 16.4 µM), SMMC7721 (IC$_{50}$ 39.9 µM)
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Source</th>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micromonolactam (157)</td>
<td>Macrolide</td>
<td>Micromonospora sp</td>
<td>2013</td>
<td>NA</td>
</tr>
<tr>
<td>Neaumycin B (158)</td>
<td>Macrolide</td>
<td>Micromonospora sp (strain CNY-010)</td>
<td>2018</td>
<td>Potent Inhibitor of Glioblastoma IC₅₀ (1µM).</td>
</tr>
<tr>
<td>Tetrocarcin A</td>
<td>Tetrocarcin</td>
<td>M. chalcea subsp. kazunoensis</td>
<td>1980</td>
<td>Antibacterial MIC (0.015 µg/ml)</td>
</tr>
<tr>
<td>Antlermicin A (159,160)</td>
<td></td>
<td></td>
<td></td>
<td>Antitumor</td>
</tr>
<tr>
<td>Tetrocarcin complex A, B, C (161-163)</td>
<td>Tetrocarcin Spirotetronate glycosides</td>
<td></td>
<td></td>
<td>Antitumor</td>
</tr>
<tr>
<td>Tetrocarcin G,H,K,L (164-167)</td>
<td>Tetrocarcin Spirotetronate glycoside</td>
<td></td>
<td></td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Tetronolide</td>
<td>Aglycon of tetrocarcin A</td>
<td>M. chalcea</td>
<td>1980</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Antibiotic F2 (168)</td>
<td></td>
<td></td>
<td></td>
<td>Antitumor</td>
</tr>
<tr>
<td>Tetrocarcin E1 (A)</td>
<td>Spirotetronate glycoside</td>
<td>M. chalcea</td>
<td>1982</td>
<td>Antibacterial MIC (3-150µg/ml).</td>
</tr>
<tr>
<td>Compound</td>
<td>Source</td>
<td>Sample Type</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Tetrocarcin F (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrocarcin C (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrocarcin D (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrocarcin L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrocarcin K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrocarcin B (169-180)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arisostatin A&B (181,182)</td>
<td>New analogs of tetrocarcin A</td>
<td>Micromonospora sp. TP-A0316</td>
<td>2000</td>
<td>Antibacterial MIC (0.39-25µM. Antitumor IC50 (0.059-0.26 µM)</td>
</tr>
<tr>
<td>Tetrocarcin P (183)</td>
<td>Tetrocarcin</td>
<td>M. harpali SCSIO GJ089.</td>
<td>2017</td>
<td>Antibacterial MIC (1 -2µg/ml)</td>
</tr>
<tr>
<td>22-dehydroxymethyl-kijanolide (184)</td>
<td>Spirotetronate glycoside.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-hydroxy-22-dehydroxymethyl-kijanolide (185)</td>
<td>Spirotetronate glycoside.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsporanates A-F (186-191)</td>
<td>Spirotetronate glycoside.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrocarcin N, H, Q (192-194)</td>
<td>Tetrocarcin</td>
<td>M. carbonacea LS276</td>
<td>2018</td>
<td>Antibacterial activity against Bacillus subtilis (MIC) value of 12.5 µM.</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Microorganism</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Actinomycins</td>
<td>Polypeptide</td>
<td>Micromonospora sp.</td>
<td>Soil</td>
<td>1951</td>
</tr>
<tr>
<td>Microcins A and B</td>
<td>Peptides</td>
<td>M. fuscus</td>
<td>Soil</td>
<td>1952</td>
</tr>
<tr>
<td>Bottromycin</td>
<td>Cyclic peptide</td>
<td>M. chalcea</td>
<td>Soil</td>
<td>1966</td>
</tr>
<tr>
<td>Antibiotic SF 1919</td>
<td>Peptide</td>
<td>Micromonospora sp.</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic 68-1147</td>
<td>Thiazole-peptide</td>
<td>M. arboresis</td>
<td>Soil</td>
<td>1978</td>
</tr>
<tr>
<td>Sch 18640</td>
<td>Peptide</td>
<td>M. arboresis</td>
<td>Soil</td>
<td>1978</td>
</tr>
<tr>
<td>Epideoxyneagamycin</td>
<td>Peptide</td>
<td>Micromonospora sp.</td>
<td>Soil</td>
<td>1979</td>
</tr>
<tr>
<td>Antibiotic PA 4046-I</td>
<td>Peptide</td>
<td>M. miyakonensis</td>
<td>Soil</td>
<td>1981</td>
</tr>
<tr>
<td>Antibiotic PA 3534J</td>
<td>Dipeptide</td>
<td>M. chalcea PA-3534</td>
<td>Soil</td>
<td>1981</td>
</tr>
<tr>
<td>Antibiotic M 9026</td>
<td>Peptide antibiotic complex</td>
<td>Micromonospora sp.</td>
<td>Soil</td>
<td>1987</td>
</tr>
<tr>
<td>Antibiotic S 54832A</td>
<td>Depsipeptide antibiotics</td>
<td>M. globosa</td>
<td>Soil</td>
<td>1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic S 54832A-I</td>
<td>Depsipeptide antibiotics</td>
<td>M. auratinigra</td>
<td>Soil</td>
<td>1984</td>
</tr>
<tr>
<td>Chloropolysporin B</td>
<td>Glyco peptide</td>
<td>Micromonospora sp.</td>
<td>Soil</td>
<td>1987</td>
</tr>
<tr>
<td>Chloropolysporin C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(209,210)</td>
<td>Sch 37137</td>
<td>Dipeptides</td>
<td>Micromonospora sp. SCC 1792</td>
<td>Soil</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>(211)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korkormicins</td>
<td>Depsipeptide</td>
<td>Micromonospora sp. C39500</td>
<td>Soil</td>
</tr>
<tr>
<td>(212 – 218)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(219)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rakicidin B</td>
<td>Cyclic lipopeptide</td>
<td>M. chalcea and a Micromonospora sp.</td>
<td>Marine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(221)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibiotic Sch 40832</td>
<td>Peptide</td>
<td>M. carbonaceae var. africana</td>
<td>Soil</td>
</tr>
<tr>
<td>(222)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibiotic Sch 49088</td>
<td>Oligosaccharide</td>
<td>M. carbonaceae</td>
<td>Soil</td>
</tr>
<tr>
<td>(223)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actinomycin Z1-Z5</td>
<td>Chromopeptide</td>
<td>M. floridensis</td>
<td>Soil</td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Telomycin</td>
<td>Macrocyclic peptide lactone</td>
<td>M. schwarzwaldensis</td>
<td>Soil</td>
<td>Antibacterial activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclo-(Pro-Trp) Peptide</td>
<td>Micromonospora sp. (strain G044)</td>
<td>sponge Tethya aurantium</td>
<td>2017</td>
<td>Antibacterial against E-coli</td>
</tr>
<tr>
<td>Cyclo-(Pro-Met) Peptide</td>
<td>Micromonospora sp. (strain G044)</td>
<td>sponge Tethya aurantium</td>
<td>2017</td>
<td>NA</td>
</tr>
<tr>
<td>Cyclo-(Pro-Val) Peptide</td>
<td>Micromonospora sp. (strain G044)</td>
<td>sponge Tethya aurantium</td>
<td>2017</td>
<td>NA</td>
</tr>
<tr>
<td>Uridine</td>
<td>Peptide</td>
<td>Micromonospora sp. (strain G044)</td>
<td>sponge Tethya aurantium</td>
<td>NA</td>
</tr>
<tr>
<td>Rakicidins G, H, I Cyclic depsipeptides</td>
<td>M. chalcea FIM 02-523</td>
<td>Marine</td>
<td>2018</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rakicidin E Cyclic depsipeptide</td>
<td>M. chalcea FIM 02-523</td>
<td>Marine</td>
<td>2018</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izumenolide Lactone</td>
<td>M. chalcea subsp. izumensis</td>
<td>Soil</td>
<td>1980</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Dotriacolide</td>
<td>Lactone</td>
<td>SC 11133</td>
<td>Soil</td>
<td>1981, Antibacterial</td>
</tr>
<tr>
<td>3, 4-Dihydrodotriacolide</td>
<td>Lactone</td>
<td>MG299-IF35</td>
<td>Soil</td>
<td>1981, NA</td>
</tr>
<tr>
<td>Antascomicins A,B,C,D,E</td>
<td>Macrocyclic lactones</td>
<td>Micromonospora sp. DSM</td>
<td>Soil</td>
<td>1996, Antagonize the immunosuppressiv e activity of FK506 and rapamycin (FKBP12 binding molecules) (IC$_{50}$ 0.7 nM)</td>
</tr>
<tr>
<td>Cymbimicin A and B</td>
<td>Lactone</td>
<td>Micromonospora sp. DSM</td>
<td>Soil</td>
<td>1997, Immuno-suppressive.</td>
</tr>
<tr>
<td>Crisamicin A</td>
<td>Naphthoquinone</td>
<td>M. purpureochromogenes subsp. halotolerans RV-79-9-101</td>
<td>Soil</td>
<td>1986, Antibacterial activity MIC (0.2-10µg/ml). Anticancer activity</td>
</tr>
<tr>
<td>Crisamicin C</td>
<td>Naphthoquinone</td>
<td>M. purpureochromogenes</td>
<td>Soil</td>
<td>1988, Antibacterial activity MIC (0.125-0.25µg/ml).</td>
</tr>
<tr>
<td>Compound Name</td>
<td>Type</td>
<td>Genus, Species</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Crisamicin C</td>
<td>Naphthoquinone</td>
<td>M. purpureochromogenes</td>
<td>Soil</td>
<td>1988</td>
</tr>
<tr>
<td>Antibiotic A</td>
<td>Naphthoquinone</td>
<td>Micromonospora sp. SANK 6039</td>
<td>Soil</td>
<td>1995</td>
</tr>
<tr>
<td>Antibiotic A</td>
<td>Naphthoquinone</td>
<td>Micromonospora sp. SANK 6039</td>
<td>Soil</td>
<td>1995</td>
</tr>
<tr>
<td>Antibiotic A</td>
<td>Naphthoquinone</td>
<td>Micromonospora sp. SA246</td>
<td>Soil</td>
<td>1997</td>
</tr>
<tr>
<td>1-Hydroxycrisamicin A</td>
<td>Naphthoquinone</td>
<td>Micromonospora sp. SA246</td>
<td>Soil</td>
<td>1997</td>
</tr>
<tr>
<td>7-Methoxy-2-propyl-5,12-naphthacenedione</td>
<td>Naphthoquinone</td>
<td>Micromonospora sp. JN79761</td>
<td>Marine</td>
<td>2012</td>
</tr>
<tr>
<td>1,2,3,4-Tetrahydro-2-hydroxy-7-methoxy-2-propyl-5,12-naphthacenedione</td>
<td>Naphthoquinone</td>
<td>Micromonospora sp. JN79761</td>
<td>Marine</td>
<td>2012</td>
</tr>
<tr>
<td>Citreamicin ξ</td>
<td>Quinone</td>
<td>M. citrea</td>
<td>Soil</td>
<td>1990</td>
</tr>
<tr>
<td>Antibiotic</td>
<td>Class</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Antibiotic GTRI-BB (crysamicin analog) (271)</td>
<td>Quinone</td>
<td>Micromonospora sp. SA-24</td>
<td>2002</td>
<td>Cytotoxic GI<sub>50</sub> (0.08-0.31µg/ml).</td>
</tr>
<tr>
<td>Streptonigrin 7-(1-methyl-2 oxopropyl)streptonigrin (272)</td>
<td>Quinone</td>
<td>Micromonospora sp. IM 2670</td>
<td>2002</td>
<td>Cytotoxic activity</td>
</tr>
<tr>
<td>Kosinostatin (273)</td>
<td>Quinocycline</td>
<td>Micromonospora sp. TPA0468</td>
<td>2002</td>
<td>NA</td>
</tr>
<tr>
<td>Fluostatins C-F (274-277)</td>
<td>Quinone</td>
<td>M. rosaria SCSIO N160</td>
<td>2012</td>
<td>NA</td>
</tr>
<tr>
<td>Fluostatins I–K (278-280)</td>
<td>Quinone</td>
<td>M. rosaria SCSIO N160</td>
<td>2012</td>
<td>NA</td>
</tr>
<tr>
<td>Phenanthroviridone (281)</td>
<td>Quinone</td>
<td>M. rosaria SCSIO N160</td>
<td>2012</td>
<td>Antibacterial Staphylococcus aureus MIC 1.0 µg/mL Antitumor IC<sub>50</sub> (0.09 ± 0.04 - 2.18 ± 0.01µM)</td>
</tr>
<tr>
<td>Lagumycin B (282), Dehydrorabelomycin (283), WS-5995 A (284)</td>
<td>Angucycline</td>
<td>Micromonospora sp.</td>
<td>2015</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cervinomycin A<sub>1</sub> (285)</td>
<td>Xanthone</td>
<td>Micromonospora sp. M39</td>
<td>2004</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Dynemicin A (286)</td>
<td>Anthraquinone</td>
<td>M. chersina ATCC 53710</td>
<td>1989</td>
<td>Antibacterial activity</td>
</tr>
<tr>
<td>Deoxydynemicin A (287)</td>
<td>Anthraquinone</td>
<td>M. globosa FERM P-10651</td>
<td>1990</td>
<td>Antibacterial activity</td>
</tr>
<tr>
<td>Compounds</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Dynemicins L, M, and N</td>
<td>Anthraquinones</td>
<td>M. chersina M 965-1</td>
<td>1991</td>
<td>Antibacterial, cytotoxic less than dynemicin A</td>
</tr>
<tr>
<td>Dynemicins O, P, and Q</td>
<td>Anthraquinones</td>
<td>M. chersina M 965-1</td>
<td>1991</td>
<td>Antibacterial cytotoxic</td>
</tr>
<tr>
<td>Lupinacidins A, B</td>
<td>Anthraquinone</td>
<td>M. lupine Lupac 08</td>
<td>2007</td>
<td>Anticancer</td>
</tr>
<tr>
<td>2-Ethyl-1,8-dihydroxy-3-</td>
<td>Anthraquinone</td>
<td>M. rhodorangea</td>
<td>2009</td>
<td>NA</td>
</tr>
<tr>
<td>Methylothraquinone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,8-Dihydroxy-1-</td>
<td>Anthraquinone</td>
<td>M. rhodorange</td>
<td>2009</td>
<td>NA</td>
</tr>
<tr>
<td>propylanthraquinone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,8-Dihydroxy-1-</td>
<td>Anthraquinone</td>
<td>M. rhodorange</td>
<td>2009</td>
<td>NA</td>
</tr>
<tr>
<td>propylanthraquinone-2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carboxylic acid; 3-Me ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupinacidin C</td>
<td>Anthraquinone</td>
<td>M. lupini Lupac 08</td>
<td>2011</td>
<td>Anticancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Species/Strain</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Homo-ε-rhodomycinone</td>
<td>Anthraquinone</td>
<td>Micromonospora sp. JN797618</td>
<td>Marine</td>
<td>2012</td>
</tr>
<tr>
<td>Rabelomycin</td>
<td>Anthraquinone</td>
<td>M. rosaria SCSIO N160</td>
<td>Marine</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nocardorubin</td>
<td>Anthracycline</td>
<td>M. narashino</td>
<td>Soil</td>
<td>1954</td>
</tr>
<tr>
<td>Doxorubicin, 11-deoxy</td>
<td>Anthracycline</td>
<td>Micromonospora spp</td>
<td>Soil</td>
<td>1980</td>
</tr>
<tr>
<td>Daunorubicin, 11-deoxy-13-dihydro</td>
<td>Anthracycline glycosides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daunorubicin, 11-deoxy-13-deoxo</td>
<td>Anthracycline glycosides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(305)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(306-308)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micromonosporin C</td>
<td>Anthracycline</td>
<td>*Micromonospora sp. ATCC 10026</td>
<td>Soil</td>
<td>1987</td>
</tr>
<tr>
<td>Micromonosporin B</td>
<td>Anthracycline</td>
<td>*Micromonospora sp. ATCC 10026</td>
<td>Soil</td>
<td>1987</td>
</tr>
<tr>
<td>(309,310)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spartanamicins A and B</td>
<td>Anthracycline</td>
<td>*Micromonospora sp. ATCC 53803</td>
<td>Soil</td>
<td>1992</td>
</tr>
<tr>
<td>(311,312)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cororubicin (313)</td>
<td>Anthracycline</td>
<td>*Micromonospora sp. JY16</td>
<td>Soil</td>
<td>1994</td>
</tr>
<tr>
<td>Bravomicin A, B, C, D, E and F</td>
<td>Anthracycline</td>
<td>M. polytrota ATCC 202091</td>
<td>Soil</td>
<td>1999</td>
</tr>
<tr>
<td>(314-319)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Kosinostatin (320)</td>
<td>Anthraclcline</td>
<td>Micromonospora sp. TP-A0468</td>
<td>2002</td>
<td>NA</td>
</tr>
<tr>
<td>Micromonomycin (321)</td>
<td>Anthraclcline</td>
<td>Micromonospora sp.</td>
<td>2004</td>
<td>Antibacterial activity</td>
</tr>
<tr>
<td>Keyicin (322)</td>
<td>Anthraclcline</td>
<td>Micromonospora sp.</td>
<td>2017</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Galtamycin B (323)</td>
<td>Anthraclcline</td>
<td>Micromonospora sp. 6368</td>
<td>2005</td>
<td>Cytostatic activity < 1µg/ml.</td>
</tr>
<tr>
<td>Anthraeyclinones (324)</td>
<td>Anthraclcline</td>
<td>Micromonospora sp.</td>
<td>2012</td>
<td>NA</td>
</tr>
<tr>
<td>Echinosporamicin (325)</td>
<td>Echinosporamicin</td>
<td>M. echinospora subsp. echinospora LL-P17</td>
<td>2004</td>
<td>Antibacterial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLN-05220</td>
<td>Echinosporamicin-type antibiotics</td>
<td>M. echinospora subsp. challisensis NRRL 12255</td>
<td>2009</td>
<td>Antitumour antimicrobial</td>
</tr>
<tr>
<td>TLN-05223</td>
<td></td>
<td>Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everninomicins (328)</td>
<td>Oligosaccharides</td>
<td>M. carbonacea NRRL 2972</td>
<td>1964</td>
<td>Antibacterial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>SCH-27899 (Ziracin) (332)</td>
<td>Oligosaccharide</td>
<td>M. carbonacea</td>
<td>1999</td>
<td>Antibacterial activity</td>
</tr>
<tr>
<td>Antibiotic Sch 58761 Orthosomycin A (333)</td>
<td>Oligosaccharide</td>
<td>Micromonospora carbonaceae</td>
<td>2000</td>
<td>Active against multidrug-resistant bacteria</td>
</tr>
<tr>
<td>Antibiotic Sch 58773 Orthosomycin G (334)</td>
<td>Oligosaccharide</td>
<td>M. carbonacea var. africana</td>
<td>2002</td>
<td>NA</td>
</tr>
<tr>
<td>Antibiotic Sch 58771 Orthosomycin F (335)</td>
<td>Oligosaccharide</td>
<td>M. carbonacea var. africana</td>
<td>2002</td>
<td>Active against S. aureus</td>
</tr>
<tr>
<td>Antibiotic Sch 58769 (336)</td>
<td>Oligosaccharide</td>
<td>M. carbonacea var. africana</td>
<td>2002</td>
<td>Active against S. aureus</td>
</tr>
<tr>
<td>Garosamine (L-form) (337)</td>
<td>Sugar</td>
<td>Sugar component of Gentamicin C1a and Gentamicin C1, antibiotic complexes from fermentations of Micromonospora.</td>
<td>1977</td>
<td>NA</td>
</tr>
<tr>
<td>Trehazolin (338)</td>
<td>Pseudosaccharide</td>
<td>Micromonospora sp. SANK</td>
<td>1991</td>
<td>Trehalase glycosidase inhibitor</td>
</tr>
<tr>
<td>Sibanomicin (339)</td>
<td>Pyrrole benzodiazepines</td>
<td>Micromonospora sp. SF2364</td>
<td>1988</td>
<td>Anticancer Antibacterial Gram + ve (MICs 12.5-100 µg/ml) Gram –ve (50 -</td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>BU-4664L</td>
<td>Dibenzoazepines</td>
<td>Micromonospora sp. ATCC 55378</td>
<td>1996</td>
<td>Anti-inflammation 142</td>
</tr>
<tr>
<td>Neihumicin</td>
<td>Pyrazines</td>
<td>M. neihuenis NH3-1 Wu</td>
<td>1988</td>
<td>Cytotoxic activity 143</td>
</tr>
<tr>
<td>LL-E19085 alpha</td>
<td>Oxazole</td>
<td>M. citrea NRRL 18351</td>
<td>1989</td>
<td>Antibacterial activity 144</td>
</tr>
<tr>
<td>Citreamicin α</td>
<td>Oxazole</td>
<td>M. citrea NRRL 18351</td>
<td>1989</td>
<td>Antifungal activity. IC 50 (0.49 µg/ml)</td>
</tr>
<tr>
<td>Citreamicins</td>
<td>Oxazole</td>
<td>M. citrea NRRL 18351</td>
<td>1990</td>
<td>Antibacterial activity</td>
</tr>
<tr>
<td>Trehalamine</td>
<td>Oxazoles</td>
<td>Micromonospora sp. SANK 62390</td>
<td>1993</td>
<td>Anti-intestinal sucrase</td>
</tr>
<tr>
<td>5-Chloro-6-methoxy-1-methylisatin</td>
<td>Indole</td>
<td>Metab. of M. carbonaceae</td>
<td>1967</td>
<td>NA</td>
</tr>
<tr>
<td>5'-hydroxystaurosporine</td>
<td>Indol carbazole alkaloid</td>
<td>Micromonospora sp. L-31-CLCO-002</td>
<td>2000</td>
<td>Cytotoxic activity 147</td>
</tr>
<tr>
<td>4'-N-methyl-5'-hydroxystaurosporine</td>
<td>Indol carbazole alkaloid</td>
<td>Micromonospora sp. L-31-CLCO-002</td>
<td>2000</td>
<td>Cytotoxic activity 147</td>
</tr>
<tr>
<td>Skatole-2-carboxylic acid</td>
<td>Indole</td>
<td>Micromonospora sp. P1068.</td>
<td>2005</td>
<td>NA</td>
</tr>
<tr>
<td>3-Methyl-1H-indole-2-carboxylic acid</td>
<td>Indole</td>
<td>Micromonospora sp. P1068.</td>
<td>2005</td>
<td>NA</td>
</tr>
<tr>
<td>5-Chloro-1H-indole-3-carboxylic acid</td>
<td>Indole</td>
<td>Micromonospora sp. P1068.</td>
<td>2005</td>
<td>NA</td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Microorganism</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>(349)</td>
<td>sp. FIM07-0019</td>
<td>Marine</td>
<td>2011</td>
</tr>
<tr>
<td>3-Hydroxymethyl-β-carboline</td>
<td>(350)</td>
<td>Micromonospora sp. M2DG17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methyl-β-carboline</td>
<td>(351)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Carboline</td>
<td>(352)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic MS 444</td>
<td>Furan</td>
<td>Micromonospora ssp</td>
<td></td>
<td>1995</td>
</tr>
<tr>
<td>Antibiotic BE 34776 (353)</td>
<td>Furan</td>
<td>Micromonospora sp. NCIMB</td>
<td>Soil</td>
<td>2000</td>
</tr>
<tr>
<td>Antibiotic SB 219383 (354)</td>
<td>Furan</td>
<td>Micromonospora sp</td>
<td>Soil</td>
<td>2000</td>
</tr>
<tr>
<td>3-(4-Hydroxyphenyl)-N-methylpropanamide</td>
<td>Amide</td>
<td>Micromonospora sp. P1068</td>
<td></td>
<td>2005</td>
</tr>
<tr>
<td>Lomaiviticins A and B</td>
<td>Dimeric</td>
<td>M. lomaivitiensis LL-371366</td>
<td>Ascidian</td>
<td>2001</td>
</tr>
<tr>
<td>(356,357)</td>
<td>Diazobenzofluorene glycosides</td>
<td></td>
<td>Polysyncratolonithostrrotum</td>
<td></td>
</tr>
<tr>
<td>Sch 725418 (358)</td>
<td>Diketopiperazine</td>
<td>Micromonospora sp.</td>
<td></td>
<td>2004</td>
</tr>
<tr>
<td>Diazepinomicin</td>
<td>Natural</td>
<td>Micromonospora sp. DPJ12</td>
<td>Ascidian</td>
<td>2004</td>
</tr>
<tr>
<td>(359)</td>
<td>Dibenzodiazepine</td>
<td></td>
<td>Didemnum Proliferum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Micromonospora sp. RV115</td>
<td>Sponge</td>
<td>Aplysina aerophoba</td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Organism</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Halomicin D</td>
<td>Ansamycin</td>
<td>M. halophytica</td>
<td>Soil</td>
<td>1967</td>
</tr>
<tr>
<td>Rifamycins</td>
<td>Ansamysins</td>
<td>M. lacustris ATCC 21975</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>3-(Methylthio)rifamycin</td>
<td>Ansamycin</td>
<td>M. lacustris</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>3-(Methylthio)rifamycin;</td>
<td>Ansamycin</td>
<td>M. lacustris</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>16,17,18,19,28,29-Hexahydro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-(Methylthio)rifamycin S</td>
<td>Ansamycin</td>
<td>M. lacustris</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>3-(Methylthio)rifamycin;</td>
<td>Ansamycin</td>
<td>M. lacustris</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>1,4-Quinone, 16,17,18,19,28,29-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hexahydro (365)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic CP 43038</td>
<td>Ansamycin</td>
<td>M. saitamica.</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>Antibiotic CP 42752</td>
<td>Ansamycin</td>
<td>M. saitamica.</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>Antibiotic CP 43139</td>
<td>Ansamycin</td>
<td>M. saitamica.</td>
<td>Soil</td>
<td>1977</td>
</tr>
<tr>
<td>Halomicins A,B,C</td>
<td>Ansamysins</td>
<td>M. halophytica subsp.</td>
<td>Salt pool</td>
<td>1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>halophytica NRRL 2998</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. halophytica subsp. nigra NRRL 3097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifamycin S</td>
<td>Ansamycin</td>
<td>Micromonospora spp.</td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Microorganism</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Butremycin (377)</td>
<td>Macrolactam</td>
<td>Micromonospora sp. K310</td>
<td>Marine</td>
<td>2014</td>
</tr>
<tr>
<td>Lobosamides A-C (378-380)</td>
<td>Macrolactam</td>
<td>Micromonospora sp.</td>
<td>Marine</td>
<td>2015</td>
</tr>
<tr>
<td>FW05328-1 (381)</td>
<td>Macrolactam</td>
<td>Micromonospora sp. FIM05328</td>
<td>Soil</td>
<td>2018</td>
</tr>
<tr>
<td>Aurodox (382)</td>
<td>Macrolactam</td>
<td>Micromonospora sp. FIM05328</td>
<td>Soil</td>
<td>2018</td>
</tr>
<tr>
<td>Microansamycins A–I (383-391)</td>
<td>Macrolactam</td>
<td>Micromonospora sp.</td>
<td>Soil</td>
<td>2018</td>
</tr>
<tr>
<td>Sporalactam A (392)</td>
<td>Ansa Macrolide</td>
<td>Micromonospora sp.</td>
<td>marine sediment</td>
<td>2017</td>
</tr>
<tr>
<td>Sporalactam B (393)</td>
<td>Ansa Macrolide</td>
<td>Micromonospora sp.</td>
<td>marine sediment</td>
<td>2017</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>Compound Class</td>
<td>Isolated From</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>3-amino-27-demethoxy-27-hydroxyrifamycin S (394)</td>
<td>Ansa Macrolide</td>
<td>Micromonospora sp.</td>
<td>Marine sediment</td>
<td>2017</td>
</tr>
<tr>
<td>3-amino-rifamycin S (395)</td>
<td>Ansa Macrolide</td>
<td>Micromonospora sp.</td>
<td>Marine sediment</td>
<td>2017</td>
</tr>
<tr>
<td>Hazimicins (5 and 6) (396,397)</td>
<td>Nitriles</td>
<td>M. echinospora var. challisensis SCC 1411</td>
<td>Soil</td>
<td>1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YM-47515 (399)</td>
<td>Isonitrile</td>
<td>M. echinospora subsp. echinospora Y-03559J</td>
<td>Soil</td>
<td>1997</td>
</tr>
<tr>
<td>Retymicin (400)</td>
<td>Xanthone</td>
<td>Micromonospora sp. Tü 6368</td>
<td>Soil</td>
<td>2005</td>
</tr>
<tr>
<td>MDN-0185 (401)</td>
<td>Polycyclic Xanthone</td>
<td>Micromonospora sp. CA-256353</td>
<td>Soil</td>
<td>2018</td>
</tr>
<tr>
<td>Mycinonic acid III (402)</td>
<td>Fatty acid</td>
<td>M. griseorubida</td>
<td>Soil</td>
<td>1991</td>
</tr>
<tr>
<td>Epimycinonic acid I (403)</td>
<td>Fatty acid</td>
<td>M. griseorubida</td>
<td>Soil</td>
<td>1991</td>
</tr>
<tr>
<td>Mycinonic acid I</td>
<td>Fatty acid</td>
<td>M. griseorubida</td>
<td>Soil</td>
<td>1991</td>
</tr>
<tr>
<td>Mycinonic acid II, Mycinonic acid IV</td>
<td>Fatty acid</td>
<td>M. griseorubida</td>
<td>Soil</td>
<td>1991</td>
</tr>
<tr>
<td>Decarboxymycinonic acid III</td>
<td>Fatty acid</td>
<td>M. griseorubida</td>
<td>Soil</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Type</td>
<td>Producing Organism</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3,15-Dihydroxy-4,6,8,14-tetramethyl-5,9-dioxo-10,12-heptadecadienoic acid</td>
<td>Fatty acid</td>
<td>M. griseorubida</td>
<td>Soil</td>
<td>1992</td>
</tr>
<tr>
<td>Saquayamycin Z</td>
<td>Saquayamycin</td>
<td>Micromonospora sp. Tü 6368</td>
<td>Soil</td>
<td>2005</td>
</tr>
<tr>
<td>Psicofuranine</td>
<td>Nucleoside-type antibiotic</td>
<td>M. echinospora</td>
<td>Soil</td>
<td>1959</td>
</tr>
<tr>
<td>7-Deazainosine</td>
<td>Nucleoside antibiotic.</td>
<td>M. chalcea</td>
<td>Soil</td>
<td>1970</td>
</tr>
<tr>
<td>5,6-Dihydro-5-azathymidine</td>
<td>Nucleoside antibiotic</td>
<td>M. melanogenses</td>
<td>Soil</td>
<td>1975</td>
</tr>
<tr>
<td>Dapiramicin A</td>
<td>Ribonucleoside</td>
<td>Micromonospora sp. SF-1917</td>
<td>Soil</td>
<td>1983</td>
</tr>
<tr>
<td>Epidapiramicin A</td>
<td>Ribonucleoside</td>
<td>Micromonospora sp.</td>
<td>Soil</td>
<td>1984</td>
</tr>
<tr>
<td>Sch 40832</td>
<td>Thiostrepton</td>
<td>M. carbonacea var. africana ATCC 39149</td>
<td>Soil</td>
<td>1998</td>
</tr>
<tr>
<td>Name</td>
<td>Structure</td>
<td>Source</td>
<td>Year</td>
<td>Activity</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Streptimidone Ao58A</td>
<td>Glutarimide</td>
<td>M. coerulea Ao58</td>
<td>1999</td>
<td>Antifungal activity MIC (3-10 µg/ml).</td>
</tr>
<tr>
<td>Maklamicin</td>
<td>Spirotetronate polyketide</td>
<td>Micromonospora sp.GMKU326</td>
<td>2011</td>
<td>Antibacterial MIC (0.2-13 µg/ml)</td>
</tr>
<tr>
<td>Neomacquarimicin</td>
<td>Carbocyclic polyketide</td>
<td>Micromonospora sp.</td>
<td>2014</td>
<td>Anticancer IC<sub>50</sub> (17-34 µM)</td>
</tr>
<tr>
<td>MBJ-0003</td>
<td>Hydroxamate metabolite</td>
<td>Micromonospora sp. 29867</td>
<td>2014</td>
<td>Cytotoxic IC<sub>50</sub> (11 µM)</td>
</tr>
<tr>
<td>7-Acetyl-3, 6-dihydroxy-8-</td>
<td></td>
<td>Micromonospora sp. SA246</td>
<td>1998</td>
<td>Lipid peroxidation inhibitor IC<sub>50</sub></td>
</tr>
<tr>
<td>methyl-1-tetralone.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTRI 02. L-form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalenepropanoic acid</td>
<td></td>
<td>Micromonospora sp. HS-HM-036</td>
<td>2016</td>
<td>Anticancer IC<sub>50</sub> (46.5 µg/ml).</td>
</tr>
<tr>
<td>Serine alkaline proteases</td>
<td>Enzymes</td>
<td>M. chaiyaphumensis S103</td>
<td>2017</td>
<td>Deproteinization of shrimp waste.</td>
</tr>
<tr>
<td>2- phenylacetic acid</td>
<td>Aromatic acid</td>
<td>Micromonospora sp. (strain G044)</td>
<td>2017</td>
<td>Detergent</td>
</tr>
<tr>
<td>Name</td>
<td>Compound</td>
<td>Source</td>
<td>Isolation</td>
<td>Activity</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Diacidene</td>
<td>Polyene Dicarboxylic Acid</td>
<td>Micromonospora coxensis MTCC 8093</td>
<td>Marine</td>
<td>2012</td>
</tr>
<tr>
<td>Antibiotic XK 206</td>
<td>Micromonospora sp</td>
<td>Soil</td>
<td>1980</td>
<td>Weak antibacterial</td>
</tr>
<tr>
<td>Deoxydehydrochorismic acid</td>
<td>M. coxensis</td>
<td>Marine</td>
<td>2012</td>
<td>NA</td>
</tr>
<tr>
<td>Glutamine scylo-inositol transaminase</td>
<td>M. purpure</td>
<td>Soil</td>
<td>1989</td>
<td>Catalyses the reaction of L-glutamine with 2,4,6/3,5-pentahydroxyhexanone to give 2-oxoglutaramate and 1-amino-1-deoxy-scyllo-inosito</td>
</tr>
<tr>
<td>Glyphomicin</td>
<td>Phosphoglycolipid</td>
<td>Micromonospora sp. ATCC 53481</td>
<td>Soil</td>
<td>1989</td>
</tr>
<tr>
<td>M GCI</td>
<td>Glycoprotein</td>
<td>Micromonospora sp. BR-1613</td>
<td>Soil</td>
<td>1984</td>
</tr>
<tr>
<td>Isopimara-2-one-3-ol-8,15-diene</td>
<td>Diterpene</td>
<td>Micromonospora sp.</td>
<td>Marine</td>
<td>2015</td>
</tr>
<tr>
<td>Micromonohalimanes A and B</td>
<td>Diterpene</td>
<td>Micromonospora sp.</td>
<td>Marine</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Daidzein-40-(2-deoxy-α-l-fucopyranoside)</td>
<td>Isoflavonoid</td>
<td>M. aurantiaca 110B</td>
<td>Soil</td>
<td>2019</td>
</tr>
<tr>
<td>Daidzein-7-(2-deoxy-α-l-fucopyranoside)</td>
<td></td>
<td></td>
<td></td>
<td>Moderate cytotoxic activity</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Organism</td>
<td>Source</td>
<td>Year</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>deoxy-α-l-fucopyranoside(435)</td>
<td>Alkaloids</td>
<td>Micromonospora sp</td>
<td>Marine</td>
<td>2020</td>
</tr>
<tr>
<td>Dimethyl phenazine-1,6-dicarboxylate (436)</td>
<td>Aromatic acid</td>
<td>Micromonospora sp</td>
<td>Marine</td>
<td>2020</td>
</tr>
<tr>
<td>phenazine-1,6-dicarboxylic acid mono methyl ester(437)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenazine-1-carboxylic acid; tubermycin(438)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-(2-hydroxyphenyl)-acetamide(439)</td>
<td>Aromatic acid</td>
<td>Micromonospora sp</td>
<td>Marine</td>
<td>2020</td>
</tr>
<tr>
<td>p-anisamide(440)</td>
<td>Aromatic acid</td>
<td>Micromonospora sp</td>
<td>Marine</td>
<td>2020</td>
</tr>
<tr>
<td>Paulomycin G (441)</td>
<td>Paulomycin</td>
<td>Micromonospora sp</td>
<td>Marine</td>
<td>2017</td>
</tr>
</tbody>
</table>

References:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>W. P. Fisher, J. Charney and W. A. Bolhofer</td>
<td>Antibiot. Chemother. (Northfield, Ill.)</td>
<td>1951</td>
<td>1</td>
<td>571–572</td>
</tr>
<tr>
<td>86</td>
<td>Google Patents</td>
<td>U.S. Patent 4,078,056</td>
<td>1978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Google Patents</td>
<td>U.S. Patent 4,478,831</td>
<td>1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>T. Okazaki, R. Enokita, H. Miyaoka, T. Takatsu and A. Torikata</td>
<td>J. Antibiot. (Tokyo)</td>
<td>1987</td>
<td>40</td>
<td>917–923</td>
</tr>
<tr>
<td>97</td>
<td>M. S. Puar, T. M. Chan, V. Hegde, M. Patel, P. Bartner, K. J. Ng, B. N. Pramanik and R. D. MacFarlane</td>
<td>J. Antibiot. (Tokyo)</td>
<td>1998</td>
<td>51</td>
<td>221–224</td>
</tr>
</tbody>
</table>

164 J. A. Marquez, A. N. N. C. Horan, M. Kalyanpur, B. K. Lee, D. Loebenberg, G. H. Miller, M. Patel and J. A. Waitz, *J.

