The Concept of Representation Capability of Databases and its Application in IS Development

Lishuan Qin
Business College, Beijing Union University, China
Lishuan.qin@buu.edu.cn

Junkang Feng
Correspondence Author, University of the West of Scotland, UK
Junkang.feng@uws.ac.uk

Abstract—The representation capability of an information system in general and a database in particular seems an important and yet elusive concept, which is concerned with, in our view, how a database ever becomes capable of representing real-world objects accurately or otherwise. To explore how to approach and then define this concept, we explore what is meant by that a database connection (i.e., a connection between database constructs such as entities in an Entity-relationship (ER) diagram and relations in a relational schema that are made available by a database) refers to, represents and accurately represents a real-world relation respectively. We also find that that the information content of the former includes the latter is a sufficient and necessary condition for the former to be able to accurately represent the latter. All these make the concept of representation capability of a database approachable and definable. Our theoretical work draws on semiotics, the semantic theory of information presented by Dretske and the information channel theory by Barwise and Seligman, and our practical work involves an information system’s development.

Index Terms—Representation Capability, Database modelling, Database theory, Information content, Information systems

I. INTRODUCTION

The motivation for this work is to explore what enables and is required for a database to represent real-world objects accurately or otherwise, in other words, how a database becomes capable of representing real-world objects accurately or otherwise and thus the representation capability of databases. Gregor’s paper [1] in MIS Quarterly says that ‘Calls continue for “good theory”’ [2] and ‘the development of our “own” theory’ [3] and presents the nature of theories in information systems. The questions that arise about the bodies of knowledge or theories encompassed in a discipline fall into a number of inter-related classes, and the first one is ‘domain questions’ [1]. Such questions are concerned with what phenomena are of interest in the discipline, and what the boundaries of the discipline are. We believe that the representation capability of an information system in general and that of a database in particular should be within the boundaries of the discipline of information systems including databases.

To this end, we explore what is meant by that a database connection (i.e., a connection between database constructs such as entities in an ER diagram and relations in a relational schema that are made available by a database) refers to, represents and accurately represents a real-world relation respectively. We also find that that the information content of the former includes the latter is a sufficient and necessary condition for the former to be able to accurately represent the latter. All these constitute a seemingly effective means to approach the important and yet elusive concept of the representation capability of databases. To develop our solution, we draw on semiotics, the semantic theory of information presented by Dretske [4] and the information channel theory by Barwise and Seligman [5], and work through practical information systems development.

II. A SEMIOTIC PERSPECTIVE FOR DATABASES

In order to explore how a database construct becomes capable of representing certain real-world objects, we propose an approach that is based on the ideas of semiotics [6], [7]. Semiotics is the study of signs or the general theory of representation [8]. Semiotics has been used to tackle problems in information systems development. For example, Sian and Tian in reference [8] suggest that the graphical notions (or visual signs) of UML are subjected to the principles of signs, and therefore they use semiotics to study the effectiveness of them. We view a database as a collection of signs, and the real-world objects that a database represents are seen as part of properties of signs. Moreover, Stamper [6] points out, ‘signs on every level depend for the correct formation of signs on the level below.’ Therefore a database can be looked at, at least, on two different levels – syntactic and semantic. The former is concerned with the formal structure of the database, and the latter objects and relationships among them that the signs (i.e., data) and constructs of the signs signify. A database design
problem may be viewed as a mismatch between the two levels.

A. Database Connections vs. Real-World Relations

In the context of conceptual database schemata, two types of connections are in question. The connections between data constructs, such as ‘entity’, that are made possible by the topological structure (i.e., a syntactic level formation of signs) of a conceptual database schema or diagram can be termed ‘database connections’ without considering what in the real-world to which they refer. The connections between real-world objects, which is what we want represented by using ‘database connections’, may be called ‘real-world relations’. They are independent of a modelling mechanism such as ER. For example, it might be a real-world fact that employee e1 belongs to division d1, which would be a ‘real-world relation’. If two entity instances, say node e1 and node d1, are connected by an edge in the instance diagram of an ER diagram such as the lower half of Fig. 2, then there is a database connection between them.

A basic task in database design is to construct a sufficient (minimally sufficient if possible) conceptual database diagram or schema that enables all real-world relations that are required to be represented to be actually represented by database connections that are made possible by the diagram or schema. In order to achieve this, we must understand what is meant by that a database connection represents a real-world relation. This takes a few more notions to define.

B. A Database Connection ‘Refers to’ a Real-World Relation

Due to nominal structural constraints [9] that a data model has, an instance of a schema normally has extra connections that come inevitably and “for free”. For example, in Fig. 2, path (e2, dp1, d1) is such a connection, which is resulted in from the existence of path (e1, dp1, d1) and path (e2, dp1). These unavoidable and free connections may have nothing to do with what is supposed to be represented. We call such paths irrelevant database connections with regard to a particular set of real-world relations. More formally, given a collection of real-world relations S, a database connection t is irrelevant to S if it refers to no real-world relation in S, otherwise t is relevant to S. Assume that ‘an undergraduate student reads a subject’ is a set of real-world relations. If in Fig. 3, node s1 refers to a postgraduate student, then the connection (s1, c1) is irrelevant to this set of real-world relations.

D. Distinguishable Database Connections

A database connection must be distinguishable from the rest in order for it to be useful in terms of representing what it is supposed to represent. Let schema1 be a relational schema or an ER diagram, t a database
connection made possible by schema1, T a type of database connections of which r is an instance, S a set of real-world relations of which s an instance; and let t refers to s and thus it is relevant to S. t is distinguishable regarding S if T can be explicitly defined by using whatever that is only made available by schema1. Moreover, if all irrelevant database connections can be explicitly defined by whatever that is only made available only schema1, T can also be explicitly defined as a consequence.

For example, for Fig. 4, assume that only full time lecturers belong to a faculty, and they belong to the faculty under which the department they work for is. With regard to the real-world relation ‘a lecturer belongs to a faculty’, all database connections referring to a part time lecturer and a faculty that are made possible by the path are irrelevant ones. Of all the possible database connections, as long as those that refer to ‘a full time lecturer belongs to a faculty’ can be defined by, say, the post of a lecturer, the hours per week they work, etc, then the relevant database connections are distinguishable. That is, a full time lecturer might be defined as:

\[\text{Full time lecturer} = \sum_{\text{Post} \in \text{FT}} \text{Lecturer} \]

(Lecturer works for Department)

E. A Database Connection ‘Represents’ a Real-World Relation

Only when a database connection refers to a real-world relation and it is distinguishable, can then the database connection be used to indicate that the real-world relation exists. In such a case, we call the former represents the latter. More formally, let schema1 be a relational schema or an ER diagram, t a database connection made possible by schema1, S a set of real-world relations, and s an instance of S. t represents s if t refers to t and t is distinguishable regarding S.

For example, in Fig. 5, which is the same as the one in Fig. 2 where from the discussion earlier database connection (e1, dp1, d1) is relevant while database connection (e2, dp1, d1) is irrelevant. Assume that e1 and e2 do not belong to different proper subsets of the entity, then neither (e1, dp1, d1) nor (e2, dp1, d1) can be explicitly defined by using, for example, relational algebra or SQL. Consequently the relevant database connection (e1, dp1, d1) cannot be distinguished from the irrelevant database connection (e2, dp1, d1).

It should be noted though that if there is no irrelevant database connection in a path with regard to a type (set) of real-world relations, then the question of whether a database connection is distinguishable does not arise. That is, all database connections represent that set of real-world relations.

The above discussion also shows that a ‘representing’ database connection must be a ‘referring’ one first. But the reverse is not true. Fig. 6 in higraph [10] illustrates this point, where t is a database connection made possible by a database schema, S is a real-world relation type, and s is an instance of S.

F. Primary Meaning vs. Implied Meaning of a Path

There are certain types of real-world relation(s) that the database connections of a path can always represent (also refer to, by definition). That is, for such real-world relations, all database connections made possible by the path refer to them, and therefore no irrelevant schema connection is possible. We reveal that such real-world relations are actually the ‘primary meaning’ of a path. In other words, we define ‘primary meaning’ of a data construct [11] in this semiotic way.

For a path in an ER diagram, or two or more relations in a relational schema, a database connection made possible by the path or relational join always has a primary meaning. For example, the path in Fig. 7 has the primary meaning that a lecturer delivers a lecture, and a student attends a lecture. These are the real-world relations that the database connections can always represent.
With certain conditions on both the syntactic level and the semantic level, a database connection may represent a real-world relation that is beyond its primary meaning. For example, the path in Fig. 7 is capable of representing 'a lecturer lectures a student', in addition to the primary meaning that we have just said. All such real-world relations constitute the 'implied meaning' of a path.

For the conditions on the semantic level, we look at business rules and the logic of a matter. If a lecturer delivers a lecture, and a student attends the lecture, then the lecturer lectures the student. This is logical. In an organization, there might be a business rule, namely ‘an employee may only work on a project that is controlled by the department to which the employee belongs’. Then from ‘an employee works on a project’ and ‘a project is controlled by one (only one) department’, we get ‘an employee belongs to a department.’

For the conditions on the syntactic level, we look out for the structure of a path. Due to its particular structure, a path may not be able to provide database connections that refer to a given set of real-world relations, or a path is capable of providing referring database connections but they are not distinguishable. We pay attention to the length of the path, the participation constraints of the entities, and so on. When the length of a path is greater than one, we watch out for those situations where the ‘plurality of joins’ [12] may apply. Here we examine the concept of ‘plurality of joins’ from the viewpoint that a database connection represents a real-world relation, and extend this concept to cover a more general type of database connections. This would hopefully show as an example how we may approach the representation capability of a database.

G. The Notion of ‘Plurality of Joins’ Reviewed and Extended

Codd puts forward the concept of ‘plurality of joins’ to explain connection traps in a relational schema [12]. For Codd, given two relations R and S, if there are more than one ternary relation U such that \(\pi_{12}(U) = R \) and \(\pi_{23}(U) = S \), then R and S have the ‘plurality of joins’. For us, more than one U means that more than one set of database connections meet the above criterion (i.e., \(\pi_{12}(U) = R \) and \(\pi_{23}(U) = S \)) and therefore can be established. They are all legitimate syntactically. For example, following Codd [12], we show two joinable relations R and S in Fig. 8, and three different joins of R and S in Fig. 9, Fig. 10, and Fig. 11 respectively below.

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>supplier</td>
<td>part</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 8 Two joinable relations

<table>
<thead>
<tr>
<th>R=S</th>
</tr>
</thead>
<tbody>
<tr>
<td>supplier</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 9 The natural join of R with S

<table>
<thead>
<tr>
<th>R=S</th>
</tr>
</thead>
<tbody>
<tr>
<td>supplier</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 10 Another join of R with S

<table>
<thead>
<tr>
<th>R=S</th>
</tr>
</thead>
<tbody>
<tr>
<td>supplier</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 11 Yet another join of R with S

However, not all joins above represent real-world relations except the ‘primary meaning’ (what this means was revealed earlier) of the two entities and the relationship between them. Unless a set of real-world relations happens to be matched by the natural join of R and S, at least one database connection does not refer to any of the set of real-world relations. As we said earlier, such a database connection is called an irrelevant database connection. For example, suppose that only (1,1,2), (2,1,1) and (2,2,1) refer to real-world relations, namely ‘supplier 1 supplies part 1 to project 2’, etc., then (1,1,1) and (2,1,2) are irrelevant database connections. Provided that relevant database connections cannot be explicitly defined (we described this point earlier), a path that is capable of giving rise to ‘plurality of joins’ will not be able to represent a set of real-world relations that involves all the entities in the path and that is not the primary meaning of the path. For the above example, the result of a join cannot be used to represent the real-world relation that ‘a supplier supplies a part to a project’.

This type of situations does not only occur to ‘joinable’ relations [12]. Given two binary relations R and S, as long as \(\pi_{21}(R) \) and S are not functions, that is, they are
of many:±/?; many where ‘?’ stands for one or many, for those tuples \(\sum_{a \in a_1} \pi_{a_1}(R) \) and \(\pi_{a_3}(U) = \sum_{a_1 \in a_2} \pi_{a_2}(S) \), the same situation occurs. That is, if we let \(R' = \sum_{a \in a_1} \pi_{a_1}(R) \), and \(S' = \sum_{a_2 \in a_2} \pi_{a_2}(S) \), then \(R' \) and \(S' \) will be joinable and therefore have the ‘plurality of joins’. This would result in the database connections of \(R \) and \(S \) being unable to represent a set of real-world relations that involves all the entities in the path provided that the real-world relations are not the primary meaning of the path \(^1\). Thus we propose to extend the idea of ‘plurality of joins’ to cover any two relations, say \(R \) and \(S \), that can have at least one common element in their common column; and to cover a path of length >2 where at least one instance of the entity in the middle of the path can participate in both relationships in the path. That is, given two relations \(R \) and \(S \), if there can be more than one ternary relation \(U \) such that \(\pi_{a_2}(U) = \sum_{a_1 \in a_2} \pi_{a_1}(R) \) and \(\pi_{a_3}(U) = \sum_{a_3 \in a_3} \pi_{a_3}(S) \), then \(R \) and \(S \) have ‘plurality of joins’ (extended from Codd’s definition mentioned earlier). Here a \(U \) can also be seen as a set of database connections from the 1st column of \(R \) to a common element of the common column of \(R \) and \(S \), and then to the 2nd column of \(S \). A similar definition of extended ‘plurality of joins’ for a path in an ER schema can also be formulated.

H. A Database Connection ‘Accurately Represents’ a Real-World Relation

The above definition of representation does not guarantee that a representation is accurate in the sense that what is represented is actually true. For example, a distinguishing little red circle on a map refers to a school thus it represents the school, however the school is now a club and the map is out of date. Such a representation is not accurate. A database connection may also be an inaccurate representation, when, for example, the database is out of date.

Thus, based on the above-discussion on what is meant by ‘a database connection represents a real-world relation’, now we draw upon Barwise and Seliman’s formulation of ‘representation’ [5, p.235] to define the notion of accurately representation. For the brevity of the presentation, in the rest of the paper, we use ‘path’ in a database model to mean any database connection when a database is viewed conceptually as a graph.

The notion of accurately representation can be defined as follows: A path say \(\text{Path} A \) in a conceptual database schema or diagram, e.g., an ER diagram, accurately represents a set of real-world relations say \(\text{Rel} A \) if for a given instance of a real-world relation, there is at least one distinguishable instance of a path in the database schema or diagram that refers to the given instance of the real-world relation such that the instance of a path is of \(\text{Path} A \) and the instance of a real-world relation is of \(\text{Rel} A \). In other words, the former represents the latter and the latter is indeed of \(\text{Rel} A \). And furthermore, this applies to all possible instances of \(\text{Rel} A \).

Thus far, we have identified what constitutes the representation capability of a database construct, which is generalized as a path when a database is viewed conceptually as a graph. The sum of such representation capability is that of the database as a whole. Enabled by the representation capability, all the real-world objects that can be represented by constructs of the database constitute the representation capacity of the database.

In the sections that follow we wish to explore the representation capability of a database further by looking at informational relationships between database connections and real-world relations. To this end the notion of the ‘information content’ of a sign, an event, and in the most general terms, a state of affairs is relevant.

III. THE NOTION OF ‘INFORMATION CONTENT’ OF A STATE OF AFFAIRS

Let us consider the following list:

Example 1. That there is smoke carries the information that there is a fire.

Example 2. That he is awarded a grade ‘A’ for his Programming course contains the information that Jack Brown has gained 80% or above for that course.

Dretske [4, p.45] defines the nuclear sense of the term ‘information content’ as follows:

A state of affairs contains information about \(X \) to just that extent to which a suitably placed observer could learn something about \(X \) by consulting it.

Following Dretske, we take information as in the form of ‘de re’, rather than ‘de dicto’, that is, in the form of ‘\(a \)’s being \(F \) carries the information that \(b \) is \(G \)’.

Dretske [4, p.65] establishes the following definition:

Information Content: A signal \(r \) carries the information that \(s = F \) = The conditional probability of \(s \)’s being \(F \), given \(r \) (and \(k \)), is 1 (but, given \(k \) alone, less than 1).

In this definition, \(k \) stands for prior knowledge about information source \(s \). Dretske’s approach, which we will extend for our purposes, is based upon the notion of probability [5, pp.14-18], which is concerned with characterizing events, we first give a definition of event:

Definition 1. Let \(s \) be a selection process under a set \(C \) of conditions, \(O \) the set of possible outcomes of \(s \), which are called states, and \(E \) the power set of \(O \), \(X \) is an event if \(ExX \) and there is a probability of \(X \), i.e., \(P(X) \).

The notation of ‘probability distribution’ applies only within a probability space.

Definition 2. Let \(s \) be a selection process under a set \(C \) of conditions, \(O \) the set of possible outcomes of \(s \), \(E \) the refer to the set of real-world relations and the relevant database connections cannot be explicitly defined.

1 This conclusion is true under the normal condition, namely the natural join of \(R \) and \(S \) does not happen to
power set of O and $E \cap X_i$ for $i = 1, \ldots, n$, P_s is the probability space of the events X_i for $i = 1, \ldots, n$ if $P_s = \{P(X_1), P(X_2), \ldots, P(X_n)\}$ and $\sum P(X_i) = 1$.

The information content is concerned with two different levels, namely tokens or particulars namely individual things and their types [5, p. 69]. It is particulars, i.e., individual things in the world that carry information [5, p. 27]. The information that tokens carry is in the form of types [5, p. 27]. Thus we need a definition for the term particulars of an event.

Definition 3. Let s be a selection process under a set C of conditions, X an event concerning s, X_i an instance of s, X_i is a particular of X if X_i is in a state Ω, written $\Omega = \text{state}(X_i)$, and $\exists s \in \Omega$.

For example, s could be concerned with data values going into an attribute, say, the Emp_Name column of a relational table; X_i is a data value in the Emp_Name column at a time t, which happens to be ‘tony_wu’; the state of X_i, i.e., state$(X_i) = ‘$a value in Emp_Name column being tony_wu’, which is Ω; X is the disjunction of two states, namely, Ω and say, $\Gamma = ‘$a value in Emp_Name column being shirley_wu’. Then, X_i is a particular of X.

Given the above concerning the two levels for information content, it would seem appropriate that the above definition of ‘the information content of a state of affairs’ by Dretske [4, p.65] should be modified as follows.

Definition 4. Let s be some selection process or mechanism the result of which is reduction of possibilities, and therefore be an information source, and k prior knowledge about s;

Let r be an event, and r_i a particular of r at time t_i and location l_i;

Let s’s being F be an event concerning s, and s_j some particular of s’s being F at time t_j and location l_j;

r_i carries the information that there must be some s_j existing at time t_j and location l_j, that is, the state of affairs that s is F at t_j and l_j if only if the conditional probability of s’s being F given r is 1 (and less than 1 given k alone).

Definition 5. That a particular r_i carries the information that a particular s_j exists can also be termed that the information content of r_i includes s_j, or in other words, s_j is in the information content of r_i.

IV. ‘INFORMATION CONTENT INCLUSION’ RELATION (IIR)

Closely following the previous section, given two events, say X and Y, there might be a special type of relations between them, i.e., ‘the particulars of event Y are in the information content of the particulars of event $X’$. For brevity, we will also call such a relation ‘event Y is in the information content of event $X’$. We suggested calling such relations ‘information content inclusion relation’ (IIR) [13]. Interestingly it happens that this term also appears in the literature, for example, in her manuscript, Duží [14] points out that information content inclusion relations (in relation to attributes) are of partial order.

Definition 6. Let X and Y be an event respectively, there exists an information content inclusion relation, IIR for short, from X to Y, if every possible particular of Y is in the information content of at least one particular of X.

An event may have information content inclusion relation (IIR) with more than one other event. Every one of the latter provides the former with its set of particulars, the whole collection of which is what a suitably placed observer could learn by consulting the particulars of the former by following Dretske’s definition [4, p.45] cited earlier. Therefore, this is the information content of the former. That is to say, the information content of an event is the set of events with which the former has an information content inclusion relation.

Definition 7. Let X be an event, the information content of X, denoted $I(X)$, is the set of events with each of which X has an information content inclusion relation.

Therefore, $I(X) \supset Y$ is an expression that denotes that event Y is in the information content of event X through the particulars of event Y being in the information content of the particulars of event X (For the notion of ‘information content’, see Definitions 4 and 5 above). For the sake of the completeness of the definition, we allow $I(X) \supset X$, which is a trivial case of $I(X) \supset Y$, when X and Y are not distinct. Note that in this paper we concern ourselves with the ‘information content inclusion’ relation as just defined only between events (and their particulars), not any other things. This is because we observe that this event-based approach to looking at databases is helpful.

V. FURTHER FORMULATING REPRESENTATION CAPABILITY OF DATABASES WITH IIR

Now we explore how the representation capability of a database may be further formulated by means of IIR in order to obtain further insight about this concept.

Proposition 1

Suppose that there is a path $PathA$ in a database model/schema and there is a real-world relation $RelA$, the whether an observer is able to learn and actually learns something about s by consulting something else such as r.

\[Note \] that k here goes only as far as what counts as a possibility involved in s, and it is not concerned with
existence of IIR: I(PathA) ∋ RelA is a sufficient and necessary condition for PathA to accurately represent RelA.

Proof

We prove the ‘sufficient’ part of the above condition by contradiction. Given I(PathA) ∋ RelA as a premise, then by the definition given above every r ∈ RelA is in the information content of at least one p ∈ PathA, which means whenever a distinguishable instance p of a path happens to be of PathA, an instance r of a real-world relation is of RelA, otherwise r may not be of RelA. And this applies to every r ∈ RelA. Now let us assume that PathA does not accurately represent RelA. This must be the case that there is at least one r ∈ RelA such that either no instance p of a path such that p represents r (i.e., either it does not refer to r or it does but it is not distinguishable) or p represents r as being of RelA, but in fact r is not of RelA. This contradicts the premise.

We now prove the ‘necessary’ part of the above condition, also by contradiction. Given that PathA accurately represents RelA as a premise, then by the definition given above, for a given instance of a real-world relation, there is at least one distinguishable instance of a path in the database model/schema that refers to the given instance of real-world relation (i.e., the former represents the latter) such that the instance of a path is of PathA and the instance of a real-world relation is of RelA. This applies to all possible instances of RelA. Now let us assume I(PathA) ∋ RelA. Then it must be the case that there is at least one instance of RelA such that it is not in the information content of any instance of PathA. This means that there must be at least one instance r of RelA such that there is no any instance p of a path such that when p is of PathA r is of RelA. This contradicts the premise.

VI. APPLICATION IN AN INFORMATION SYSTEM’S DEVELOPMENT

We applied this concept of representation capability in the development of an information system in our college in China to make sure that it can indeed represent what it is designed to represent. This system supports the management of a training centre with over 400 networked computers, and one of the modules of the system is concerned with course/project management. We show a relevant interface of the system below in Fig. 12.

The conceptual design in the form of an ER diagram of the part of the backend database of the system that is concerned with course management is shown below in Fig. 13.

We now show that the representation capability of the ER diagram enables course management of the course/project management module of the information system. The real-world objects in question are courses, resources for courses, the deliveries of a course and students who choose and participate in the delivery of a course. The real-world relations are: ‘a course is supported by various resources such as texts and software’, and ‘a student takes a course’. The ER diagram should be able to accurately represent both.

We justify our design by means of the three levels presented in the paper. First, the development process followed Peirce’s semiotic triad model during which we made sure that when they are considered in isolation all database objects and connections refer to the above targeted real-world objects and relations. This is the lowest level, namely ‘referring’ that we have been discussing.

Second, let us show that the database connections enabled by the ER diagram are also distinguishable, and if so, they would be also ‘representing’ the targeted real-world objects and relations. To this end, we find that the binary relationship ‘supports’ between entity course resource and entity course would not include any irrelevant database connections regarding the first real-world relation – ‘a course is supported by various resources such as texts and software’, and thus all database connections within this path are distinguishable. The path made up of entities student, course delivery and
VII. CONCLUSIONS

In this paper a seemingly important and yet elusive concept of the *representation capability* of databases has been investigated through theoretical work and practical information systems development. The work presented here draws on semiotics, the semantic theory of information presented by Dretske [4] and the information channel theory by Barwise and Seligman [5]. It was found that to approach this concept, to explore and identify what is meant and required by that a database connection refers to, represents and accurately represents a real-world relation respectively is effective. It was also found that that the information content of a database connection includes a real-world relation is a sufficient and necessary condition for the former to be able to accurately represent the latter. All these make the concept of representation capability of a database approachable and definable. Furthermore, based on the representation capability of a database, the *representation capacity* of the database can be defined as well, which is all the real-world relations that can be represented by the constructs that are made possible and available by the database.

REFERENCES

Authors' Profiles

Lishuan Qin: Director of Experimental Teaching Centre (East Campus) on Economics and Trade of Beijing Union University, Professor of Information Management and Information System, PhD of Management Science and Engineering of Tianjin University. Research interests: knowledge management, human resource management, and management system engineering.

Junkang Feng BSc, MPhil, PhD: Majoring in Computer Science. He worked as an RA at the University of Manchester UK. Dr Feng is a Senior Lecturer and Leader of the Database Technology Research Group at the University of the West of Scotland, UK. He is a Visiting Professor at Donghua University and Beijing Union University in China. He is Senior Associate Editor of the International Journal of Systems and Society. Dr Feng’s research interests include information and information flow theories, distributed information systems and database theory and technology, and Soft Systems Methodology. He has published 234 research articles. Dr Feng completed or was involved in 9 externally funded research projects. His work was submitted to RAE 2001 and REF 2014 in the UK. He has supervised 10 PhD research programmes and 44 MSc dissertation projects to successful completion.