Cytotoxic effect of vehicular PM metals Fe3+ & Zn2+ on lung epithelia

Woods, Carly; Litherland, Gary; Hursthouse, Andrew; Lundy, Fionnuala; Sergeant, Gerard; Lockhart, John; Mclellan, Iain

Published in:
European Respiratory Journal

DOI:

Published: 28/10/2020

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

This is an author-submitted, peer-reviewed version of a manuscript that has been accepted for publication in the European Respiratory Journal, prior to copy-editing, formatting and typesetting. This version of the manuscript may not be duplicated or reproduced without prior permission from the copyright owner, the European Respiratory Society. The publisher is not responsible or liable for any errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final, copy-edited, published article, which is the version of record, is available without a subscription 18 months after the date of issue publication."
Cytotoxic effect of vehicular PM metals Fe$^{3+}$ & Zn$^{2+}$ on lung epithelia

C. Woods1, G. J. Litherland1, A. S. Hursthousene2, F. T. Lundy3, G. P. Sergeant4, J. C. Lockhart1, I. S. McLellan2

Border & REgions Airways Training Hub1 Institute of Biomedical & Environmental Health Research, School of Health & Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, Scotland. 2 School of Computing, Engineering & Physical Sciences, University of the West of Scotland. 3 Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland 4 Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland.

Chronic obstructive pulmonary disease prevalence and exacerbations are associated with elevated levels of air pollutants such as particulate matter (PM). The study of metal components gives an indication of health effects encompassing whole PM exposure. Effect of metal components on the respiratory system is in early stages of investigation. This research focuses on common PM metals (zinc & iron) which originate from a common pollutant source (vehicular emissions1) and their action on lung epithelial cell lines; A549 & BEAS-2B.

Absolute metal concentration of analytical grade metal salts (FeCl$_3$ & ZnCl$_2$) were applied to A549 and BEAS-2B. After 24 h exposure, cytotoxicity was assessed using MTT metabolic assay and Interleukin (IL-6) production was determined using ELISA.

Zinc displayed a greater epithelial cytotoxicity potential than iron (IC$_{50}$ ~ 10 µg/ml cf. > 100 µg/ml) on A549 & BEAS-2B (Fig. 1), conversely, iron stimulation demonstrated greater IL-6 production than zinc. Cell culture studies are currently ongoing.

Figure 1: Fe$^{3+}$ & Zn$^{2+}$ ions displayed dose dependent cytotoxic effects on A549 (A) & BEAS-2B (B) at concentrations greater than 10 µg/ml. Mean ± SEM. --- IC$_{50}$ threshold. * p<0.05; ** p<0.001. Significance determined using one-way ANOVA. n=3.
Preliminary results indicate differential action of metals on lung epithelium. Identifying the impact of these pollutant components may help develop targeted approaches to improving air quality and overall lung health.