Oxidative stress driven inflammatory responses in lung epithelial cells


Published in:
THORAX

DOI:
10.1136/thorax-2020-BTSabstracts.55

Published: 21/01/2021

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Oxidative Stress Driven Inflammatory Responses in Lung Epithelial Cells

COPD, Inflammation, Epithelial cell

F. Tarhini¹, L. Dunning¹, A. Crilly¹, J. Brzeszczynska¹, L. McGarvey², K. Thornbury³, C. S.Goodyear⁴, J. C.Lockhart¹, G. J.Litherland¹

¹University of the West of Scotland - Paisley, Scotland (United Kingdom), ²Queens University Belfast - Belfast, Northern Ireland (United Kingdom), ³Dundalk Institute of Technology - Dundalk, Ireland (Ireland), ⁴University of Glasgow - Institute of Infection, Immunity & Inflammation (United Kingdom). This study was funded by the EU under the Interreg VA Programme, managed by the Special EU programmes body (SEUPB).

Cigarette smoke stimulates an inflammatory response and produces oxidants that cause oxidative stress in the lung, promoting pathophysiological changes related to chronic obstructive pulmonary disease (COPD). Hydrogen peroxide (H₂O₂) is an important oxidant detected in breath condensate of COPD patients². We aim to understand how chronic exposure to H₂O₂ alone or in combination with other inflammatory mediators influences epithelial cell responses relevant to COPD lung pathology.

BEAS-2B cells were exposed chronically to H₂O₂ for 2 h/day for 3 days at different concentrations, alone or in combination with TGF-β (10 ng/ml) or LPS (100 or 500 ng/ml). Cell viability was assessed by MTT assay. Cytokines were measured by ELISA. Intracellular ROS production was detected by CM-H₂DCFDA assay. Data were analysed using one-way ANOVA, followed by Multiple Comparison Test.

Cells tolerated a repeated exposure of H₂O₂ (up to 15 μM) ± TGF-β or LPS without significant loss of viability. Intracellular ROS was significantly elevated in the presence of LPS (mean ± SEM; 217±17 %; p<0.0001) or H₂O₂ (331±13 %; p<0.0001), with an additive effect of combined treatment (H₂O₂, 444±12 vs. LPS + H₂O₂, 604±35 %; p<0.0001). H₂O₂ stimulated modest release of IL-8 (38±2 pg/ml) and IL-6 (84±13 pg/ml). However, repeated 15 μM H₂O₂ exposure synergistically enhanced TGF-β induced IL-8 (TGF-β, 194±13 vs. TGF-β+ H₂O₂, 279±10 pg/ml; p<0.0001) but not IL-6 (TGF-β, 431±22 vs. TGF-β+ H₂O₂, 449±2 pg/ml). H₂O₂ synergistically enhanced LPS secretion of both IL-8 (LPS, 2487±21 vs. LPS+ H₂O₂, 2898±109 pg/ml; p<0.0001), and IL-6 (LPS, 2469±72 vs. LPS+ H₂O₂, 3277±62 pg/ml; p<0.0001).

Oxidative stress appears to be generated in BEAS-2B cells by LPS or H₂O₂ alone, and increased in combination. Repeated exposure to H₂O₂ induced minimal inflammatory response, but synergistically enhanced the effect of TGF-β and LPS on cytokine production. These data suggest combined exposure models may be useful to study the effects of epithelial cell challenges relevant to COPD pathology.