DESPEC Phase-0 campaign at GSI

Published in: Il Nuovo Cimento C -Colloquia on Physics

DOI: 10.1393/ncc/i2021-21067-8

E-pub ahead of print: 12/08/2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
COMMUNICATIONS: SIF Congress 2020

DESPEC Phase-0 campaign at GSI

(1) Department di Fisica, Università degli Studi di Milano - Milano, Italy
(2) INFN, Sezione di Milano - Milano, Italy
(3) Department of Physics, University of Surrey - Guildford, GU2 7XH, UK
(4) National Physical Laboratory - Teddington, Middlesex, TW11 0LB, UK
(5) GSI Helmholtzzentrum für Schwerionenforschung GmbH - Darmstadt, Germany
(6) Institut für Kernphysik der Universität zu Köln - Zülzicher Strasse 77, D-50937 Köln, Germany
(7) KTH Royal Institute of Technology - Stockholm, Sweden
(8) Institut für Kernphysik, Technische Universität Darmstadt - Darmstadt, Germany
(9) University of Edinburgh, School of Physics and Astronomy - Edinburgh EH9 3FD, UK
(10) SUPA, School of Computing, Engineering and Physical Sciences, University of the West of Scotland - Paisley, UK
(11) Department of Physics, Indian Institute of Technology Ropar - Rupnagar, India
(12) Jozef Stefan Institute - Jamova cesta 39, 1000 Ljubljana, Slovenia
(13) Instituto de Física Corpuscular, CSIC-Universidad de Valencia - E-46071 Valencia, Spain
(14) Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa - E-28040 Madrid, Spain
(15) School of Computing Engineering and Mathematics, University of Brighton - Brighton, UK
(16) Université Paris-Saclay, IJCLab, CNRS/IN2P3 - F-91405 Orsay, France
(17) Department of Physics, Oliver Lodge Laboratory, University of Liverpool Liverpool L69 7ZE, UK
(18) University of Jyväskylä - Seminaarintauko 15, 40014 Jyväskylä, Finland
(19) Laboratoire de Physique de la Matière Condensée et Nanostructures, Université Lyon I, CNRS, UMR 5586, Domaine scientifique de la Doua - F-69622 Villeurbanne Cedex, France

received 15 January 2021

(*) On behalf of the HISPEC-DESPEC Collaboration.

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
Summary. — This paper reports preliminary results of the DESPEC campaign at GSI, focused on the study of neutron-deficient nuclei approaching 100Sn. The results presented show the isomeric decays of excited states with $I^\pi = 14^+$ and 8^+ in 96Pd and 94Pd, respectively. The detailed characterisation of the DESPEC set-up and analysis methodologies, proven in this experimental run, are crucial for the future campaigns.

1. – Introduction

The HISPEC-DESPEC Collaboration aims at investigating the nuclear structure of exotic nuclei formed in high-energy projectile-fragmentation reactions by performing decay spectroscopy measurements at GSI, as part of the Phase-0 GSI-FAIR experiments. 100Sn, having $N = Z = 50$, is the heaviest self-conjugate doubly magic nucleus that is stable with respect to particle emission. Therefore, nuclei in the south-west region of 100Sn are subject to extensive experimental and theoretical studies [1]. In particular, the structure of 94Pd is an excellent case for understanding the effects of proton-neutron pairing, suggested to explain structural properties in the intermediate $N = Z$ nuclei 96Cd [2, 3] and 92Pd [4]. The triplet 92Pd, 94Pd and 96Cd is predicted to show a sharp reduction in $B(E2)$ values for the yrast $8^+ \to 6^+$ transition. A measurement of the $B(E2)$ transition strength in 94Pd following population of the yrast cascade through the $I^\pi = 14^+$ isomer will allow a stringent test of state-of-the-art shell model calculations for $N \sim Z$ nuclei approaching 100Sn and prove the role of p-n pairing in their structural evolution. The aim of this experiment was to study excited states in 94Pd and several proton emitters along the $N = Z$ line between $A = 90$ and $A = 100$. A second aim of this experimental run is the search for direct evidence of proton emission in 89Rh and 93Ag as an important input for the modeling of the astrophysical rp-process. The prediction of the composition of rp-process ashes is important for the understanding of neutron-star crusts [5] and of the origin of the nuclei 92,94Mo and 96,98Ru, found in large quantities in the Solar System [6].

2. – Experiment and preliminary results

The experiment was performed at the GSI accelerator facility, where the nuclei of interest were produced in fragmentation reactions induced by a 124Xe beam at an energy of 850 MeV/A impinging on a 4 g/cm2 thick 9Be target. The selection and transport of the ions of interest was performed using the FRS magnetic spectrometer (the FRagment Separator) through the Bp-ΔE-Bp method. The ions were identified using the ToF-Bp-ΔE method, with a measurement of the mass number over ionic charge (A/Q) and the atomic number Z. The study of the structure of the nuclei of interest was performed using γ-ray spectroscopy following the internal decay of metastable isomeric states. The same set-up allows to measure lifetimes of excited states populated by β decay through ion-β and $\beta - \gamma$-ray correlations. These measurements can be performed using a composite detector array. Fragments are implanted in the Advanced Implantation Detector Array (AIDA) [7], composed of three layers of high-pixelated DSSSDs, used also to detect β particles. Timing measurements of β particles are performed by sandwiching
Fig. 1. – Panels (a), (b): Two-dimensional histograms of the energy spectrum from FATIMA vs. the time difference between a γ-ray detected in FATIMA and an ion signal in the last scintillator of the FRS. Panels (c), (d), (e), (f) give γ-ray energy spectra for FATIMA and Galileo. The panels are for \(^{96}\text{Pd} \) (left) and for \(^{94}\text{Pd} \) (right).

The previously reported yrast isomeric states, with half-lives 499(13) ns and 2.2(1) \(\mu \)s in \(^{94}\text{Pd} \) and \(^{96}\text{Pd} \), respectively [12,13], were identified using particle-id gated γ-ray spectra using both LaBr₃(Ce) and the HPGe detectors. The individual, discrete transitions which are emitted in the decay of these isomeric cascades are characterised by horizontal lines in the 2D matrix of particle gated γ-ray energy vs. the time difference between γ-ray emission and the ions passing through the final scintillation detector at the focal plane of the FRS (SC41). The energy vs. time plot gated on \(^{94}\text{Pd} \) and \(^{96}\text{Pd} \) ions for the FATIMA detectors is show in fig. 1. Transitions following the decay of the \(I^\pi = 8^+ \) isomer in \(^{96}\text{Pd} \) and \(I^\pi = 14^+ \) in \(^{94}\text{Pd} \) are clearly seen in the energy spectra shown in fig. 1. Results from this experiment were exploited to tune a GEANT4 [14] simulation of help for future proposals and experiments preparation. In fig. 2 we report a comparison of simulated and measured spectra relative to the isomeric decay in \(^{96}\text{Pd} \) for FATIMA and
GTC systems. Further analysis of the data is ongoing to extract level lifetimes of states below the isomer in 94Pd and surrounding nuclei. The β decay of the other species produced in the fragmentation reaction is also currently being studied.

3. – Conclusions

This paper reports the preliminary results of the first experiment of the DESPEC Phase-0 campaign, focused on the study of proton-rich nuclei in the 100Sn region. In particular, the isomeric lines of 94,96Pd are identified. These results are intended as a proof of the correct functioning of the detector system and analysis techniques employed and will be used in future campaigns with the DESPEC set-up.

* * *

The work of the FRS and the GSI accelerator staff is acknowledged. This work is partially supported by the STFC and the UK Department for Business, Energy and Industrial Strategy via the National Measurement Office. Support by the BMBF under grant No. 05P19RDFN1 by the Helmholtz Research Academy Hesse for FAIR (HFHF), by the GSI F&E grant KJOLIE1820 and the BMBF grant 05P19PKNFA and by INFN is acknowledged.

REFERENCES