Erratum

Published in:
Physical Review C

DOI:
10.1103/PhysRevC.104.029901

Published: 26/08/2021

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
https://doi.org/10.1103/PhysRevC.104.029901

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Erratum: Probing isospin symmetry in the \(^{50}\text{Fe},^{50}\text{Mn},^{50}\text{Cr}\) isobaric triplet via electromagnetic transition rates

M.M. Giles, B.S. Nara Singh,∗ L. Barber, D.M. Cullen, and M.J. Mallaburn
School of Physics & Astronomy, Schuster Building,
The University of Manchester, Manchester M13 9PL, United Kingdom

M. Beckers, A. Blazhev, T. Braunroth, A. Dewald, C. Fransen, A. Goldkuhle, J. Jolie, F. Mammes, C. Müller-Gatermann, D. Wölk, and K.O. Zell
Institut für Kernphysik, Universität zu Köln, Köln D-50937, Germany

S.M. Lenzi
Dipartimento di Fisica e Astronomia dell’Università and INFN,
Sezione di Padova, Via F. Marzolo 8, Padova I-35131, Italy

A. Poves
Departamento de Física teórica and IFT, UAM-CSIC,
Universidad Autónoma de Madrid, Madrid E-28049, Spain
(Dated: August 17, 2021)

PACS numbers:

∗Present address: School of Engineering and Computing, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom
The published $B(E2 \downarrow; 2^+ \rightarrow 0^+)$ value of 237(8) e^2fm4 for 50Mn [1] was obtained by using the measured lifetime value of the first 2^+ state in 50Mn and the relative intensities of 64.1(12) and 100(2) for the 149 keV and 800 keV γ-decays, respectively taken from a table in Ref. [2]. With this note, we clarify that a choice was made in 2018 to consider the latest γ-ray intensities available and obtain $M(E2)$ value for the $2^+ \rightarrow 0^+$ decay in 50Mn. Here, we consider the current evaluated relative γ-ray intensities given in NNDC [3], i.e., 100 (9) and 64 (8) for the 149 keV and 800 keV γ-decays, respectively. This new analysis lowers the data point for 50Mn given in Ref. [1] by 20% with a value of 28 efm2 as shown in Fig. 1 (green square).

It should be noted that the uncertainties in matrix elements presented in Ref. [1] were higher by a factor of two due to a typo in the manipulation of plots. This is now is corrected in Fig. 1, showing the correct uncertainties.

Figure 1 indicates that the original conclusion drawn in Ref. [1], i.e., the linear $M(E2)$ versus T_z curve for A=50 nuclei, may still be valid for the updated data points with the correct uncertainties and using the evaluated γ-ray intensities for 50Mn from NNDC [3]. However, the new data point for 50Mn (in green in Fig. 1) strongly suggests that the $M(E2)$ versus T_z curve is more likely to be non-linear. This warrants new simultaneous measurements of electromagnetic transition rates in the A=50 triplet using the same experimental setup to eliminate systematic errors and investigate the non-linearity. Such measurements will be crucial to critically assess the level with which isospin symmetry breaking occurs in mass 50 nuclei.

It is worth noting that the data presented in a table and a figure are inconsistent in Ref. [2]. We would like to thank Prof. R. Wadsworth for the discussions prompting this note.

FIG. 1: The matrix element $M_{\text{tot}} (M(E2))$ as a function of T_z for the three $T = 1, A = 50$ isobaric nuclei. Data for ^{50}Mn has been obtained for the first time in 2018 [1]. Here, all the black data points are the same as those presented in Ref. [1] while the green data point for ^{50}Mn is new and corresponds to the updated analysis with branching ratios taken from Ref. [3].