Application of bio-based electrodes in emerging capacitive deionization technology for desalination and wastewater treatment

Sayed, Enas Taha; Olabi, A.G.; Shehata, Nabila; Al Radi, Muaz; Majdy Muhaisen, Omar; Rodriguez, Cristina; Ali Atieh, Muataz; Abdelkareem, Mohammad Ali

Published in:
Ain Shams Engineering Journal

DOI:
10.1016/j.asej.2022.102030

E-pub ahead of print: 28/10/2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Application of bio-based electrodes in emerging capacitive deionization technology for desalination and wastewater treatment

Enas Taha Sayed a,b, A.G. Olabi c,d,e, Nabila Shehata e, Muaz Al Radi f, Omar Majdy Muaisen c, Cristina Rodriguez g, Muataz Ali Atieh a,h,i, Mohammad Ali Abdelkareem b,c,e

a Center for Advanced Materials Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
b Chemical Engineering Department, Minia University, Elminia, Egypt
c Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
d Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK
e Department of Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
f Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
g Department of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
h Department of Mechanical and Nuclear Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
i Department of Mechanical and Nuclear Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates

Abstract

Capacitive deionization (CDI) is an emerging, efficient, cheap, and environmentally friendly water desalination technology. One of the most critical components of the CDI system is the electrodes; thus, improving their performance will promote its commercial application. The cost, efficiency, and availability of the electrode materials are the main challenges facing the application of the CDI in water desalination and wastewater treatment compared to other technologies. To reduce the cost of the electrodes, carbon materials derived from biomass and general wastes are being considered. A detailed review of the application of bio-based derived electrodes in CDI desalination and wastewater treatment is presented. A comparison between these novel materials and conventional carbon nanomaterials is discussed in terms of resource availability, ease of manufacture, cost, material specifications, and performance. Finally, future research recommendations are introduced to enhance this technology's feasibility and performance.

© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Water covers 70% of the planet's surface, but only 1% is a freshwater source [1]. Rapid human population growth and technological advances resulted in clean drinking water scarcity. Meanwhile, wastewater is generated daily in huge quantities and requires enormous amounts of energy for proper treatment before safe discharge [2–5]. Several methods have been introduced for water purification and recovery from wastewater besides water desalination technologies [6]. These technologies are based on thermal separation, selective membrane permeabilities, chemical potential differences, or electrical charge separation. Although membrane-based separation is environmentally feasible compared to thermal-based methods, it still requires a considerable portion of energy from fossil fuels with high environmental impacts [7].

Emerging technologies such as forward osmosis (FO) [8], capacitive deionization (CDI) [9–11], electrodialysis (ED) [12,13], electrodialysis reversal (EDR) [14], and microbial desalination cells (MDC) [15,16], have lower energy consumption and lower environmental impacts than traditional methods [17,18]. Among these methods, Capacitive deionization (CDI) is the most attractive because it has high energy efficiency, no need for high-pressure pumps, environmentally friendly, simple in operation, and lower energy consumption [19–21]. Moreover, it can be integrated into...
solar energy or any other renewable energy source in isolated regions with no or low environmental impacts [22].

A CDI unit consists of two porous electrodes (often carbon electrodes) and a separator (either a porous dielectric material or an open channel) inserted between them. The electrodes are subjected to a potential difference (typically 1–1.4 V) [23]. The saline or contaminated water passes between the positive and negative electrodes, where the unwanted ions in the water move into an electric double layer (EDL) along the electrode-water interface, thus eliminating the unwanted salts or contaminants [24] in an electroosorption process on the electrode surfaces (Fig. 1(a)). The ions are electrostatically held in the electrode surface and released with reversing polarity in the discharging stage “desorption process” [25] (Fig. 1(b)). A CDI unit can complete thousands of adsorption–desorption cycles. The degradation of the electrodes will lead to a reduced cell’s lifetime. Oxygen and some organic compounds [26] present in the water can degrade electrodes by oxidation [27], reducing the electroosorption capacity and the cell’s lifetime [28].

Porous carbon electrodes have a high surface area, are stable at a wide temperature and pH windows, and have excellent adsorption capabilities; therefore, they were extensively applied in the CDI electrodes [29–34]. Bio-based carbon materials are cheap with no environmental impact; therefore, they are an excellent candidate to replace activated carbon. These bio-based carbon materials demonstrated promising results in several applications, such as supercapacitors [35–38], fuel cells [39–42], batteries [43,44], and CDI [45–49].

The CDI performance depends on the electrode’s materials; thus, proper material selection is important for achieving high cell performance. The electrode materials must have salt electroosorption capacity, high specific capacity, and sufficient strength to maintain the cell’s hydrodynamic forces during cell operation. The materials must also have good biofouling resistance, high absorptivity, i.e., hydrophilic, and high capability [50,51]. Furthermore, they must be free from chemicals that harm humans, animals, or ecosystems [52]. Traditional carbon materials used in electrodes include carbon nanotubes, carbon nanofibers, carbon aerogels, activated carbon, and graphene. These materials are produced from non-renewable materials through high energy-consuming processes, which challenge large-scale production and industrial applications. Activated carbon (AC) extracted from biomass [53,54] is suitable for CDI electrode material due to its low price, availability, sustainability, and negligible environmental effect. Moreover, AC derived from biomass shows a high SSA “specific surface area”, high conductivity, and well distribution of pores [55]. Therefore, it is necessary to investigate different biomass and waste resources and evaluate their suitability as a carbon source for electrode manufacturing to produce a cheap and reliable CDI system.

Several reports summarized the progress done in applying the CDI as an effective tool in water desalination [56–58], wastewater treatment, brine treatment of the RO unit [59], carbon-based materials [58,60], and the different methods for improving the performance of the carbon-based materials in the CDI system [19]. Recently Elisadiki et al. summarized the application of bio-based electrodes in the CDI for water desalination [21]. The application of bio-based carbon materials in the CDI electrode for wastewater treatment has not been made yet. Recently, many of the desalination CDI cells’ biobased electrodes have been done and need to be summarized. The present work aims to critically review the recent advances in bio-based electrodes for CDI applications in water desalination and wastewater treatment. The preparation of CDI electrodes from biomass/waste resources is briefly described alongside a detailed comparison between bio-based and conventional electrodes. Finally, the current challenges for the industrial application of such electrode materials and future research recommendations are introduced.

2. Preparation methods of activated carbon from different biomass resources

Biomass is classified as living or dead organisms and all by-products of these organisms, animals or plants. Elemental analysis shows that biomass is abundant in carbon, hydrogen, oxygen, and nitrogen [61]. The main advantages of carbon derived from biomass sources are their abundance and availability, low cost, in situ nano-porous structure development, flexibility in manufacturing, and its intrinsically renewable nature [62]. Due to their high SSA “specific surface area” and excellent conductivity, biomass-derived porous carbons such as those obtained from rice husk, bacterial cellulose, or sugarcane demonstrated promising results as electrodes of the CDI cell and other applications [63]. A proper preparation method of activated carbon from biomass involves carbonization through hydrothermal and/or pyrolysis and activation to increase the surface area. The common methods for preparation and activation of biobased materials are summarized as follows:

2.1. Hydrothermal carbonization

HTC “Hydrothermal carbonization”, is a thermochemical method in which the organic content is turned into nanostructured porous carbons through fractionation of the biomass feedstock [64,65]. HTC can treat wet biomass at moderately low temperatures (180–250 °C) without a pre-drying step, resulting in low production costs [66]. The process’s residence time and temperature determine the severity of the reaction and biomass coalification level. The solid residue from the HTC process, known as hydrochar [67], exhibits high hydrophobic and friable properties and is easily

Fig. 1. CDI cell under (a) electrosorption and (b) regeneration steps.

Ali and co-workers [68] have reported HTC-derived carbons with high SSA and excellent performance as promising CDI electrodes. The degree of biomass coalification and the HTC process conditions, such as temperature, residence time, pressure, and the use of organic or inorganic catalysts, play a significant role in determining the performance of the resulting carbons. The carbons obtained at lower temperatures and with longer residence times have shown higher SSA and excellent electrochemical features. In another study, Sayed et al. [69] investigated microwave-assisted HTC of various types of biomass to develop nanostructured carbon materials for CDI applications. The microwave-assisted HTC process has been shown to enhance the carbonization and activation rates, resulting in nanostructured carbon materials with high SSA and excellent electrochemical features. The study showed that the HTC process can be an effective method for the production of high-performance activated carbons from biomass.

The CDI performance depends on the electrode’s materials; thus, proper material selection is important for achieving high cell performance. The electrode materials must have salt electroosorption capacity, high specific capacity, and sufficient strength to maintain the cell’s hydrodynamic forces during cell operation. The materials must also have good biofouling resistance, high absorptivity, i.e., hydrophilic, and high capability [50,51]. Furthermore, they must be free from chemicals that harm humans, animals, or ecosystems [52]. Traditional carbon materials used in electrodes include carbon nanotubes, carbon nanofibers, carbon aerogels, activated carbon, and graphene. These materials are produced from non-renewable materials through high energy-consuming processes, which challenge large-scale production and industrial applications. Activated carbon (AC) extracted from biomass [53,54] is suitable for CDI electrode material due to its low price, availability, sustainability, and negligible environmental effect. Moreover, AC derived from biomass shows a high SSA “specific surface area”, high conductivity, and well distribution of pores [55]. Therefore, it is necessary to investigate different biomass and waste resources and evaluate their suitability as a carbon source for electrode manufacturing to produce a cheap and reliable CDI system.

Several reports summarized the progress done in applying the CDI as an effective tool in water desalination [56–58], wastewater treatment, brine treatment of the RO unit [59], carbon-based materials [58,60], and the different methods for improving the performance of the carbon-based materials in the CDI system [19]. Recently Elisadiki et al. summarized the application of bio-based electrodes in the CDI for water desalination [21]. The application of bio-based carbon materials in the CDI electrode for wastewater treatment has not been made yet. Recently, many of the desalination CDI cells’ biobased electrodes have been done and need to be summarized. The present work aims to critically review the recent advances in bio-based electrodes for CDI applications in water desalination and wastewater treatment. The preparation of CDI electrodes from biomass/waste resources is briefly described alongside a detailed comparison between bio-based and conventional electrodes. Finally, the current challenges for the industrial application of such electrode materials and future research recommendations are introduced.

2. Preparation methods of activated carbon from different biomass resources

Biomass is classified as living or dead organisms and all by-products of these organisms, animals or plants. Elemental analysis shows that biomass is abundant in carbon, hydrogen, oxygen, and nitrogen [61]. The main advantages of carbon derived from biomass sources are their abundance and availability, low cost, in situ nano-porous structure development, flexibility in manufacturing, and its intrinsically renewable nature [62]. Due to their high SSA “specific surface area” and excellent conductivity, biomass-derived porous carbons such as those obtained from rice husk, bacterial cellulose, or sugarcane demonstrated promising results as electrodes of the CDI cell and other applications [63]. A proper preparation method of activated carbon from biomass involves carbonization through hydrothermal and/or pyrolysis and activation to increase the surface area. The common methods for preparation and activation of biobased materials are summarized as follows:

2.1. Hydrothermal carbonization

HTC “Hydrothermal carbonization”, is a thermochemical method in which the organic content is turned into nanostructured porous carbons through fractionation of the biomass feedstock [64,65]. HTC can treat wet biomass at moderately low temperatures (180–250 °C) without a pre-drying step, resulting in low production costs [66]. The process’s residence time and temperature determine the severity of the reaction and biomass coalification level. The solid residue from the HTC process, known as hydrochar [67], exhibits high hydrophobic and friable properties and is easily

Fig. 1. CDI cell under (a) electrosorption and (b) regeneration steps.

Ali and co-workers [68] have reported HTC-derived carbons with high SSA and excellent performance as promising CDI electrodes. The degree of biomass coalification and the HTC process conditions, such as temperature, residence time, pressure, and the use of organic or inorganic catalysts, play a significant role in determining the performance of the resulting carbons. The carbons obtained at lower temperatures and with longer residence times have shown higher SSA and excellent electrochemical features. In another study, Sayed et al. [69] investigated microwave-assisted HTC of various types of biomass to develop nanostructured carbon materials for CDI applications. The microwave-assisted HTC process has been shown to enhance the carbonization and activation rates, resulting in nanostructured carbon materials with high SSA and excellent electrochemical features. The study showed that the HTC process can be an effective method for the production of high-performance activated carbons from biomass.

The CDI performance depends on the electrode’s materials; thus, proper material selection is important for achieving high cell performance. The electrode materials must have salt electroosorption capacity, high specific capacity, and sufficient strength to maintain the cell’s hydrodynamic forces during cell operation. The materials must also have good biofouling resistance, high absorptivity, i.e., hydrophilic, and high capability [50,51]. Furthermore, they must be free from chemicals that harm humans, animals, or ecosystems [52]. Traditional carbon materials used in electrodes include carbon nanotubes, carbon nanofibers, carbon aerogels, activated carbon, and graphene. These materials are produced from non-renewable materials through high energy-consuming processes, which challenge large-scale production and industrial applications. Activated carbon (AC) extracted from biomass [53,54] is suitable for CDI electrode material due to its low price, availability, sustainability, and negligible environmental effect. Moreover, AC derived from biomass shows a high SSA “specific surface area”, high conductivity, and well distribution of pores [55]. Therefore, it is necessary to investigate different biomass and waste resources and evaluate their suitability as a carbon source for electrode manufacturing to produce a cheap and reliable CDI system.
separated from the liquid product. The hydrochar shows higher mass and energy density, improved dewaterability, and better combustion performance than raw biomass [68]. However, the hydrochar properties depend on the biomass source [69]. The hydrochar possesses a low specific surface area and poor porous nature; thus, a subsequent activation or carbonization process is necessary to modify its physical and chemical properties to enhance its performance as electrode material [70].

2.2. Pyrolysis

Pyrolysis usually produces activated carbon (AC) at temperatures below 1000 °C [71]. Pyrolysis conditions (mainly temperature) play a significant part in creating the AC’s surface and textural features. Increasing the temperature resulted in increasing the graphitization and thus decreasing the surface’s electrical resistance. Studies have also shown that higher pyrolysis temperature contributes to the pore’s growth by eliminating part of the volatile matter, thereby increasing the micropore-associated surface area. A flexible carbon sponge derived from cotton was synthesized via pyrolysis and NH₃ treatment at high temperatures (750–1100 °C). The resulting electrode displayed a high SSA up to 2680 m²/g, a specific capacitance of 110 F/g, and an excellent desalination performance (16.1 mg/g). Fly ash of sugarcane bagasse was used to prepare AC by a thermal treatment between 200 and 800 °C, which was used to fabricate a CDI electrode. High temperature, 800 °C, immensely increased the SSA from 226 to 463 m²/g while low temperature, 200 °C, exceeded the surface oxygen groups; thus, the electrode wettability. The improved wettability at low temperature resulted in increasing the salt adsorption capacity (6.2 mg/g).

2.3. Activation

The activation process plays an essential role in increasing porosity and enhancing the SSA of carbon materials [72]. The activation can be done by chemical means in an inert environment at a specific ratio of the activating agent to the carbon, by physical means (CO₂ or steam), or both [63]. Physical activation is more straightforward and environmentally driven than chemical activation; however, it requires a higher temperature (800–1000 °C) and longer activation time. Physical activation using carbon dioxide increases the average pore volume. While chemical activation creates activated carbon with a high SSA, good porous structure, a wide distribution of pores, and high carbon content. However, chemical activation had many significant drawbacks, including a post-activation water washing process required to eliminate impurities and additional treatment necessary to handle polluted water byproduct [73]. Potassium hydroxide (KOH) is the frequent chemical medium used for biochar activation. Zinc chloride (ZnCl₂) is also used as a chemical agent for activation [74]. Compared with KOH activation, CO₂ exhibits a high level of graphitization for capacitive deionization and energy storage applications [75]. The activation temperature is a crucial factor in the resulting physicochemical characteristics of the carbon material. A porous carbon with high SSA was prepared from chicken feathers [76] and activated chemically using different KOH:C ratios at different temperatures. The SSA of the untreated carbon was 642 m²/g which significantly increased to 1642 m²/g after activation with KOH at 800 °C.

2.4. Salt templating

Salt templating is an efficient and straightforward route to produce porous carbon materials doped with heteroatoms. A heteroatoms’ precursor is applied to the activated carbon/biobased materials and mixed with a low melting point salt to enable heteroatom doping into the produced carbon. Low melting point salts like LiCl, NaCl, KCl, or ZnCl₂ that behave as both solvent and template are used [77]. This technique is employed to fabricate carbons doped with a heteroatom, adjustable pore volume and structure, and a high surface area. Such properties cannot be realized through conventional activation methods. The salt template’s addition stabilizes the pore structure, prevents the formation of carbon bumps and clusters, and creates an ordered structure during hydrothermal [78]. The heteroatoms such as boron, phosphorus, nitrogen, and sulfur enhance the electrical conductivity and wettability, leading to improved electrochemical performance. Nitrogen is the most used doping agent due to its similar atomic size and valence bonds to carbon. Nitrogen-doped carbon has a higher content of defects, higher accessible area, and higher sites for charge adsorption, thereby improving the capacitance. A biomass-based carbon precursor was fabricated from glucose, glucosamine, and 2-thiophene carboxylic acid “as a sulfur source”. Zinc chloride and cesium acetate were used as a salt template and an activating agent. The obtained carbon demonstrated a high SSA of 2830 m²/g (1.0 mass% N) with a high sorption capacity of 15.0 mg/g. Fig. 2 shows a comparison of the different preparation methods in terms of advantages and disadvantages.

3. Bio-based electrodes in CDI for water desalination

The most crucial application of CDI systems is water desalination, where the CDI cell is used to adsorb sodium and chloride ions from the water, thus reducing the water salinity. In this section, implementing bio-based materials for preparing CDI electrodes for water desalination is summarized and discussed.

3.1. Agriculture-based electrode materials

This section summarizes the progress done in preparing activated carbon using different agricultural residues for CDI.

Cotton: Cotton-derived carbon sponge obtained by the pyrolysis of raw cotton was prepared at different heat temperatures (750, 850, 950, 1100 °C) under ammonia and applied as an electrode of the CDI cell. The highest performance was obtained at 1000 °C, with an electrode’s specific capacitance of 109.9 F/g with a high charge efficiency of 77 %, and an electro sorption capacity of 16.1 mg/g using an initial NaCl solution of 500 mg/L [79]. Moreover, the electrode showed good cyclic stability and high reversibility adsorption/desorption. The excellent performance of the cotton-derived carbon sponge electrode was related to its high SSA of 2680 m²/g, excellent electrical conductivity, suitable pore size distribution (0.8–4 nm), and high hydrophilicity (due to the plenty of oxygen surface groups).

Sugarcane bagasse: Sugarcane bagasse is commonly used as boiler fuel, underestimating its value compared with its chemical-driven materials. Using microwave-assisted carbonization, bagasse was used to prepare hierarchically porous biochars followed by activation (using potassium hydroxide in CO₂ and N₂). The produced biochars are tested in CDI cells under different flow rates ranging from 100 to 600 cm³/min. The total pore volume ratio of the bagasse-based biochar activated under a CO₂ flow of 300 cm³/min (CO₂:300) was 56.7 % compared with 45.4 % in the N₂:600 electrode. Moreover, the CO₂:300 showed higher mesopore volume, higher SSA (1019 m²/g), and thus a higher specific capacitance of 208 F/g at 5 mV/s, compared with 96 F/g for the N₂:300 biochar. The desalination tests at 1.2 V in a batch mode using a 5 mM NaCl confirmed that the CO₂:300 had an excellent electrosorption capacity of 28.9 mg/g and a faster salt rate adsorption than N₂ activated samples. The salt absorption capacity (SAC)
observed for all CO$_2$-x samples was significantly higher than those of N$_2$-x samples [80]. A sugarcane bagasse fly ash (SCBFA) was used to synthesise AC via the pyrolysis process. Increasing the pyrolysis temperature increased the surface area by removing part of the fly ash, while pyrolysis at a low temperature, 200 °C, prevented the decomposition of surface oxygen groups (SOG) that are responsible for the electrodes’ wettability. The SCBFA-based ACs were investigated as CDI’s electrodes, higher specific capacitance values at 1 mV/s were obtained at 200 °C (55 F/g) and 400 °C (39 F/g) compared to the lower values at higher temperatures at 600 °C “34 F/g” and 800 °C “20 F/g” and the maximum salt adsorption capacity was 5.3 mg/g at 200 °C. SCBFA-based AC was synthesized by chemical activation of SCBFA using ZnCl$_2$ or KOH as activation agents. Using a high mass ratio of ZnCl$_2$ (>1:2) decreased the SAC regardless of activation temperature due to residual Zn’s existence and thus reduced the electrosorption. Although more profound cleaning decreased the amount of residual Zn, it was not adequate to remove all Zn from the AC [81]. Thereby, SCBFA chemically activated with ZnCl$_2$ is not proper for CDI’s electrode. On the other hand, using KOH as activating agent drastically decreased the carbon hydrophobicity, which in terms enhanced the polar surface oxygen group (SOG), increasing the SSA, thus improving the electrosorption. Although more profound cleaning decreased the amount of residual Zn, it was not adequate to remove all Zn from the AC [81].

The HPC electrode’s specific capacitance was 120.5 F/g at 5 mV/s, indicating a high ability to store capacitive ions. The HPC’s electrosorption capacity was 8.11 mg/g, and a 0.92 mg/g/min deionisation rate was achieved. The energy consumption in the case of the HPC was found to be 0.064 kWh/mol, which is lower than that consumed in the case of F400 (0.082 kWh/mol). Furthermore, the HPC showed an excellent regeneration capacity, indicating its suitability for water desalination and other water softening applications and treating ammonium and heavy metal contaminated water. Activated carbon (AC) derived RH was also prepared through carbonization under different temperatures (350, 450, 600, and 750 °C) [86]. The synthesized RHAC was examined in CDI. The RHAC prepared at 450 or 600 °C showed higher salt removal efficiency due to their high SSA and mesopore volume. The RHAC synthesized at 600 °C achieved the highest desalination performance as 5.2 g of salt per g of electrode per day. Moreover, the electrode almost maintained its electrosorption capacity and kinetics after 80 electrosorption/desorption cycles. RH-AC was also prepared by carbonization under a nitrogen atmosphere at 500 °C followed by chemical activation using KOH under a nitrogen atmosphere at 800 °C using the mass ratio of KOH to the precursor of 4:1 [87]. The prepared RH-AC exhibited an SSA of 2290 m2/g and showed a superior electrosorption capacity of 20.02 mg/g. HPC-derived RH was synthesized by the carbonization process followed by steam activation in the existence of silicon components working as a natural template to control the hierarchical porous structure (RHC-A). Finally, the RHC-A was treated with hydrofluoric acid to remove the silicon component, obtaining mesopore-dominant porous carbons (RHC-H) [88]. RHC-A and RHC-H were investigated in CDI under batch and continuous modes to recognize the pore structure’s influence on CDI performance. RHC-A and RHC-H showed lower maximum electrosorption than commercial AC under batch mode. While under the continuous mode, RHC-A attained the highest salt removal capacity (8.09 mg/g) compared to RHC-H (1.63 mg/g) and commercial AC (5.4 mg/g). RHC-A promoted the ions adsorption and trans-

3.2. Rice husk:

Rice husk (RH) is common agricultural biomass, with a global 148.2 million tons in 2014 [83,84]. A HPC “hierarchical porous carbon” electrode from rice husk biochar was prepared and compared with commercial activated carbon powder (F400) [85]. The HPC showed a SSA of 1839 m2/g with a higher mesopore volume to a total pore volume ratio of 0.58 compared to 0.48 of the commercial activated carbon. The HPC electrode’s specific capacitance was 120.5 F/g at 5 mV/s, indicating a high ability to store capacitive ions. The HPC’s electrosorption capacity was 8.11 mg/g, and a 0.92 mg/g/min deionisation rate was achieved. The energy consumption in the case of the HPC was found to be 0.064 kWh/mol, which is lower than that consumed in the case of F400 (0.082 kWh/mol). Furthermore, the HPC showed an excellent regeneration capacity, indicating its suitability for water desalination and other water softening applications and treating ammonium and heavy metal contaminated water. Activated carbon (AC) derived RH was also prepared through carbonization under different temperatures (350, 450, 600, and 750 °C) [86]. The synthesized RHAC was examined in CDI. The RHAC prepared at 450 or 600 °C showed higher salt removal efficiency due to their high SSA and mesopore volume. The RHAC synthesized at 600 °C achieved the highest desalination performance as 5.2 g of salt per g of electrode per day. Moreover, the electrode almost maintained its electrosorption capacity and kinetics after 80 electrosorption/desorption cycles. RH-AC was also prepared by carbonization under a nitrogen atmosphere at 500 °C followed by chemical activation using KOH under a nitrogen atmosphere at 800 °C using the mass ratio of KOH to the precursor of 4:1 [87]. The prepared RH-AC exhibited an SSA of 2290 m2/g and showed a superior electrosorption capacity of 20.02 mg/g. HPC-derived RH was synthesized by the carbonization process followed by steam activation in the existence of silicon components working as a natural template to control the hierarchical porous structure (RHC-A). Finally, the RHC-A was treated with hydrofluoric acid to remove the silicon component, obtaining mesopore-dominant porous carbons (RHC-H) [88]. RHC-A and RHC-H were investigated in CDI under batch and continuous modes to recognize the pore structure’s influence on CDI performance. RHC-A and RHC-H showed lower maximum electrosorption than commercial AC under batch mode. While under the continuous mode, RHC-A attained the highest salt removal capacity (8.09 mg/g) compared to RHC-H (1.63 mg/g) and commercial AC (5.4 mg/g). RHC-A promoted the ions adsorption and trans-
portation due to the interconnection between mesopores and micropores structure.

Shiitake (Lentinus edodes) mushroom: Lentinus edodes is an edible mushroom that is cultivated and consumed in many Asian countries.

The performance of the CDI unit using untreated carbon (UC) and ZnCl2 treated carbon (TC) derived from hydrothermal treated Lentinus edodes was compared to that using activated carbon (AC) using 500 ppm NaCl, a constant flow rate of 10 mL/min, and 1.2 V [89]. The specific capacitance and salt absorption capacity (SACs) for UC, TC, and AC electrodes were 232 F/g, 247.6 F/g; 198 F/g, 92.4 mg/g; 12.9 mg/g, and 6.6 mg/g, respectively. These results showed the positive effect of ZnCl2 activation on the biomass electrode, reaching a maximum efficiency of 65.7 %.

Soybean: NPC “Nitrogen-doped porous carbon” and its sulphonated one (S-NPC) were produced from soybean shells using pyrolysis followed by KHC03 treatment in N2 atmosphere and aryl diazonium salt mixture with sulfonic groups. The SSA and total pore volume of NPC and S-NPC were 1036.2 and 844.0 m2/g; and 0.43 and 0.37 cm3/g, respectively. The sulfonic groups effectively reduced the expulsion impact of the co-ions. They improved the charge efficiency, the specific capacitance (215.3 F/g for S-NPC and 165.2 F/g for NPC), and the SAC (16.0 mg/g for S-NPC and 15.5 mg/g for NPC). The adsorption and desorption rates for S-NPC electrodes were also higher than those of NPC [46]. Soybean was also used to synthesise NAPC/C “N-doped activated porous carbon decorated by graphene” [90]. The soya beans were crushed with a ball mill, stemmed for 30 min at 90 °C; then, the mixture was sieved to attain soy milk [89]. The NAPC/G was obtained through pre-carbonization and chemical activation using KOH. The NAPC/G electrode realized a high specific capacitance of 370 F/g and high stability as the electrode maintained 97 % of its capacitance after 3000 cycles. Moreover, NAPC/G attained a promising SAC of 38.5 mg/g, a desalination rate of 6.6 mg/g min and high stability as the desalination performance maintained 93.5 % after 50 cycles. The superior performance of NAPC/G-based CDI was related to the ultra-high SSA (2993.5 m2/g), high hydrophilicity, and prolific micro-mesoporous structure of NAPC, in addition to the high conductivity of graphene.

Bamboo: A composite synthesis of bamboo-based activated carbon (BAC)/manganese dioxide (MnO2) was tested in a CDI system. The results showed BAC has an outstanding electrical conductivity, a large surface area of 1747 m2/g, a hierarchical pores structure, and a capacitance of 158 F/g at 10 mV/s. Furthermore, the specific capacitance does not decrease even after 500 cycles, and all charge-discharge graphs displayed well triangular and symmetrical shapes indicating good cycling stability and reversibility. Large quantities of surface oxygen groups increased the whole composite’s hydrophilicity, whereas the MnO2 nanoparticles offered a high adsorption capability and rapid reaction kinetics. CNT tests carried out in 150 mL NaCl solution at 1.2 V showed a SAC of 103.3 mg/g [91].

Palm tree: Phoenix dactylifera, or a date palm tree, is an abundant supply of solid agricultural waste, mainly seen in the world’s arid and semiarid areas. A study by Govindan et al. [92] proved the effectiveness of activated carbon electrodes derived from the leaf of palm tree waste. The electrodes’ modification allowed a reversible intercalation/transition of Na ions by the involvement of nanoscale α-MnO2 particles appearing as redox mediators. For the functional composite substance (α-MnO2 /F-AC), the α-MnO2 nanoparticles (NPs) are produced hydrothermally on the activated carbon powder [Fig. 3 (a)]. The pristine α-MnO2/F-AC has a specific area of 1224 m2/g and electrical capacitance of 259 F/g at 10 mV/s. The CDI electrodes’ desalination performance was evaluated using α-MnO2/F-AC, and F-AC derived electrodes as anode and cathode, Fig. 3 (b). Results demonstrated electrosorption capacity of 17.8 mg/g using 600 mg/L NaCl batch-mode CDI; an electrochemical adsorption rate of 1.7 mg/g/s, and SAC retention higher than 99.7 %. These results suggest that the electrodes centred on α-MnO2/F-AC / F-AC can be reliable and stable for CDI applications (Fig. 3 (c)). The CDI cell’s improved electrical efficiency and pseudocapacitive activity can be described by the α-MnO2 nanoparticles playing a significant role in promoting synergistic redox-based charge-discharge direction conditions that are consistent with the CDI process’s voltage operating requirements.

Date palm leaflets were chemically activated using NaOH to synthesise AC and investigated as an electrode in CDI under different applied voltage (1, 1.2, 1.4, 1.6 and 1.8 V) and salt concentrations (50, 100, 200 and 300 mg/L) [93]. It revealed that the SAC was influenced by the amount of mesopores found in the AC, and the highest SAC of 5.38 mg/g was achieved using 100 ppm NaCl solution at 1.8 V. A natural palm tree was chemically activated to fabricate a 3D microporous graphenelike carbon (CNPT) [94]. Then CNPT was mechanically mixed with multi-walled nanotube (V2O5, NTs), 5 wt%, to form a V2O5 NTs/CNPT composite and investigated as cathode for hybrid CDI. A V2O5 NTs/CNPT cathode exhibited an ascendant salt adsorption retention of 94.7 % after 50 charge/dischARGE cycles. Shell wastes discarded from the processes of extraction of palm and bitter tea oil yield small amounts of sulfur, nitrogen, and toxic compounds. At the same time, carbon can be used to manufacture low-cost ACs. Bitter-tea and palm shell waste products were used as base materials to form activated carbons, then applied in the CDI. The palm-derived activated carbon (PAC) was also doped with Ag+-cyclodextrin complexes (Ag@C/PAC) at 673 K. At 1.2 V, an electrosorption efficiency of 25 % was obtained in the case of the bitter tea-derived activated carbon (BAC) compared to 28 % in the case of the PAC electrodes. Reversing the polarity of PAC and Ag@C/PAC from 1.6 V to −1.6 V improved the electrosorption efficiency by 40 %. After 20 cycles, both doped and undoped electrode materials are stable in CDI operation. The Ag@C/PACs demonstrated a high disinfection ability (95–98 %) for two hours [95].

Dates: Dates are among the most abundant biomass resources in regions with large deserts, such as the Middle East and North African countries. Biochar produced from date seeds was used for porous activated carbon synthesis using KOH, Fig. 4a. Date seed-derived-derived activated carbon (DSAC) porosity increased with increasing biochar/KOH ratios. The maximum specific surface area was obtained at a ratio of 1:1.5 (1020.85 m2/g) compared to values of 579.35, 803.65, and 980.55 m2/g for ratios 1:0.5, 1:1, and 1:2, respectively. The specific capacitance values at a 10 mV/s were 180 F/g for ratio 1:0.5, 275 F/g for ratio 1:1, 100 F/g for ratio 1:1.5, and 340 F/g for the highest ratio of 1:2. The maximum charge efficiency was obtained at the 1:1.5 ratio (86.4 %) in comparison to 1:0.5, 1:1, and 1:2, where the respective charge efficiencies were 61.6 %, 70.1 %, and 74.2 %, respectively. Furthermore, the biochar/KOH ratio of 1:1.5 demonstrated the maximum deionizing capacity, the fastest electrosorption rate (Fig. 4b & 4c), and an electrosorption capacity of 22.2 mg/g, which is better than many reported commercial electrodes. It was also found that the electrode with a ratio of 1:1.5 had an excellent regeneration performance with up to 6 batch cycles with negligible electrosorption capacity loss (<5%) [96]. A binderless AC monolith was fabricated from date stone by pyrolysis process under nitrogen atmosphere at 1000 °C (CP1000) followed by physical activation under CO2 at 900 °C (ACP900) [55]. The physical activation significantly increased the SSA from 248 to 877 m2/g, and the microporosity structure was well developed. The ACP900 was investigated as a CDI electrode exhibiting high specific capacitance of 270.9 F/g at 10 mV/s.

Lotus leaf: An abundant yet discarded carbon source, just 1 % of the 70–100 M tons of lotus leaf (LL) available in China is currently
being used, mostly in the catering industry [97]. Hydrophilic porous carbon nanosheets with SSA of 4482 m²/g were developed using lotus leaf. The nanosheet-specific capacitances were 225 F/g and 289 F/g at 0.5 A/g in 1 M NaCl and 6 M KOH solutions. The electrosorption capacities were 13.5 mg/g and 65.0 mg/g towards NaCl at 1.2 V and 1.6 V. The conductivity recovers to the initial amount even after 10 cycles, indicating the activated LL electrode has good reversibility [98]. Lotus stems were used to fabricate a 3D tertiary porous electrode via a carbonization process at 500°C followed by activation at 800°C [99]. The LS500/A800 had a hierarchical macro-, meso-, and micro-porosity, “a tertiary pore structure”. The synthesized electrode was examined in MCDI cell and achieved a SAC of 31.7 mg/g at 1.4 V and high stability (97% SAC remained after 100 cycles). The high desalination performance and stability of LS500/A800 electrodes based MCDI related to the high surface area (2500 m²/g), high porosity and robust framework of the tertiary pore structure electrode that enhanced the ion adsorption and introduced more adsorption sites.

Pine: Phosphorus-doped porous carbon was manufactured by activation of pinecones (PPCP), an abundant agricultural waste, using H₃PO₄ as the activation agent at different activation temperatures (700, 800, and 900 °C) [100]. The PPCP electrodes increased the pore's SSA and volume while increasing the activation temperature. PPCP treated at 800 °C (PPCP800) and 900 °C (PPCP900) have specific areas of 1176 m²/g and 2034 m²/g, and pore volumes of 0.45 cm³/g and 0.81 cm³/g, respectively. While the PPCP800 electrode does not have the largest SSA, its specific capacitance ranks the best of all the electrodes due to the high degree of graphitization, superior porous nature, the highest phosphorus content, and the smallest charge transfer resistance. The PPCP800 electrode showed the highest salt removal capacity of 14.62 mg/g at 1.2 V using 1000 mg/L NaCl sol. with the highest salt removal rate. PPCP800 electrodes also showed no degradation in desalination performance during the first 100 cycles, suggesting good repeatability [100].

Pine pollen, a natural and abundant material rich in cellulose, was utilized to produce porous carbon materials [101]. The porous material formed by calcination at 900 °C resulted in salt removal capacities of 7.25 mg/g and 19.43 mg/g at NaCl solution of 50.5 mS/cm and 500 mS/cm, respectively. The electrode also offered good process stability due to its large SSA and pore volume. The low surface oxygen concentration decreased the material's ohmic resistance and increased the charge efficiency [102]. This result contradicts the improvement of the CDI performance by the oxygen surface groups due to their role in enhancing wettability.

Peanut: Peanut crops are widely distributed around the world. Activated carbon with low ash content and high porosity could be obtained through carbonization of peanut shells followed by alkali activation at 750 °C. A CDI desalination system using Peanut derived activated carbon (PS-AC) demonstrated a better perfor-
mance than commercial activated carbon used in supercapacitors (SC-AC) due to the defects and the larger pore size of the PS-AC. The introduction of thermally treated MoS2 (D-MoS2) into the PS-AC improved the performance. The maximum specific salt-adsorption capacity of the D-MoS2/PS-AC system was 8.98 mg/g for CDI experiments at 1000 mg/L of initial NaCl at 1.2 V, compared to 7.92 mg/g for PS-AC/PS-AC. The PS-AC/SC-AC electrodes showed a salt removal percentage of 28.7 %, and the D-MoS2/PS-AC showed a salt removal percentage of 35 %. The improved performance using D-MoS2 was related to the shorter deionizing cycle time and a greater electrosorption capacity of MoS2 due to its negatively charged surface that attracts more ions [103].

Almond: Three different activated biochar carbons under three pyrolysis temperatures from raw almond shells were investigated as electrodes for a CDI system with a 500 mg/L NaCl sol. at 1.2 V. The specific surface area at 900 °C (452.2 m²/g) is almost double that at 800 °C (226.3 m²/g); however, increasing the temperature to 1000 °C resulted in a decrease of approximately 30 % to 317.4 m²/g. 900 °C showed the best performance with 19.2 mg/g SAC ion adsorption. The energy consumption reported was 0.26 kWh/m³, making it competitive with conventional brackish water desalination systems [49].

Loofa sponge: Loofa sponge (Luffa cylindrica) composed of approximately 60 %, 30 %, and 10 % of cellulose, hemicellulose, and lignin, respectively, was used as a base material for the fabrication of activated carbon by pyrolytic carbonization. A hierarchically porous structure was obtained after activation with KOH, where the total SSA, specific capacitance, and the total pore volume increased with increasing alkali/char ratio. The Loofa sponge (LS) derived carbon prepared using 4:1 of KOH/char demonstrated the highest adsorption capacity of N₂ with a SSA of 1819 m²/g. A specific capacitance of 93.0 F/g at 5 mV/s in an aqueous solution of 1 M NaCl. Furthermore, the electrosorption capacity was 22.5 mg/g in batch CDI at 1.0 V when using 10 mM NaCl. The corresponding ion removal efficiency was 40.1 %, and the recovery rate was 97 % [104]. Luffa sponge was carbonized at 800 °C under Ar atmosphere to obtain Luffa-derived carbon (SDL-C), then chemically activated using KOH at 800 °C (SDL-A [105]). Luffa-derived carbon before and after activation was investigated as electrodes in a batch mode MCDI under different salt concentrations (500 to 2500 mg/L) and applied potential (0.8–1.2 V). SDL-A exhibited a higher SAC of 38 mg/g using 2500 mg/L NaCl and 1.2 V compared to SDL-C (22 mg/g). Moreover, SDL-A showed lower energy consumption of 132 kJ mol⁻¹ salt in comparison of SDL-C (143 kJ mol⁻¹). Outstanding SAC of SDL-A related to the existence of micro/mesoporous structure formed during the activation process.

Coconut: Huynh et al. [106] studied the performance of an innovative composite of CNTs and activated carbon derived from coconut shells as CDI electrodes. The surface area of the electrode with a mass ratio AC/CNT of 9:1 was recorded at 630 m²/g, with a specific capacity of 90.2 F/g at 20 mV/s, a SAC of 14.1 mg/g at 1.0 V, and energy consumption of 0.312 kWh/m³. The addition of CNTs to the AC enhanced the overall electrode’s electrical and electrochemical performance while maintaining good mechanical properties and stability, with 100 % capacitance reserved after 10 cycles. Another study activated biochar (AB) extracted from coconut shells combined with manganese dioxide for CDI applications. The AB-MnO₂ nanocomposites, developed by indirect co-precipitation, exhibited a specific surface area of 304 m²/g with specific capacitance in the range of 410–523 F/g at 5 to 200 mV/s. The specific electrosorption capacity was 33.9–68.4 mg/g at solution concentrations ranging 100–1000 mg/L. Ultimately, the nanocomposite displayed good electrochemical reversibility, excellent regeneration performance, and electrochemical stability [107]. Coconut shell-derived activated carbon (CS-AC) was synthesized hydrothermally at 850–950 °C. Graphene, carbon nanotube or both (1 wt) was incorporated in CS-AC, constituting three different electrodes named AC/Gr, AC/CNT, or AC/Gr/CNT, respectively [108]. The synthesized electrodes were investigated for CDI desalination of brackish water. Among different electrodes, AC/Gr/CNT realized the highest desalination performance due to the synergistic effect.

Fig. 4. (a) Schematic of date seed activated carbon using pyrolysis, (b) Desalination experiment results at 250 mg/L and 1.2 V, and (c) CDI Ragone plots for the synthesized activated carbon electrodes, adapted from [96], with permission No. 5414201279912.
of the graphene and CNT, achieving salt adsorption rate of 1.51 mg/g min (at 1.0 V), SAC of 9.58 mg/g and capacitance of 60 F/g (at 5 mV/s) in 200 ppm NaCl, Fig. 5.

Tamarind: Tamarind shell was used to fabricate two-dimensional N-doped porous carbon nanosheets activated with KOH. The N-doped nanosheet surface area was 410 m²/g, and its specific capacitance was 174.5 F/g at 10 mV/s compared with 70.6 F/g for the undoped carbon. The salt adsorption capacity tested in a 600 mg/l NaCl medium at 1.2 V was 18.8 mg/g in the N-doped nanosheets, which is significantly larger than undoped carbon (11.1 mg/g). The charge efficiency (CE) at 1.2 V was 83 % for the doped material than the undoped carbon’s CE value of 71 %. The N-doped carbon greatly enhanced the electrode’s wettability and improved the electrosorption performance due to smaller ion transfer and high active sites, making it an excellent electrode material for the effective CDI process [109].

Jackfruit: A high surface area porous carbon was synthesized by carbonizing agricultural waste jackfruit’s peels, followed by KOH activation [110]. The activation process significantly increased the synthesized carbon’s SSA from 607 m²/g to 1955 m²/g. The activated electrode had the highest specific capacity of 307 F/g, the highest salt removal efficiency of 95 %, and the highest electrosorption capacity of 1.18 mg/g on batch desalination tests with 30–500 mg/L NaCl using 2.5 mL/min at different voltages of 1.2, 1.4 and 2.0 V.

Citrus: Citrus peels are rich sources of polysaccharides, making them a suitable-based material for carbon electrodes. A hydrothermal synthesis process was used to prepare carbon material for electrodes from the citrus peel, and the effect of ZnCl₂, KOH, and H₃PO₄ additives was studied. The ZnCl₂ addition enriches the functional groups containing O and N and provides a higher SSA of 323 m²/g than 265 m²/g and 25 m²/g for KOH and H₃PO₄ addition, respectively. ZnCl₂ activated carbon also displayed the highest specific capacity of 120 F/g. When used as an anode in the CDI cell, a desalination removal of 16 mg/g and a salt adsorption rate of 0.67 mg/g/min was obtained, higher than values corresponding to KOH and H₃PO₄ activated electrodes. ZnCl₂ electrode has the highest charge efficiency of 61.4 % and an 80 % desalination retention after 35 cycles [111].

Watermelon: The behavior of activated carbon derived from watermelon (WMAC) was investigated as an anode and its composite (WMAC/MnFe₂O₄) as a cathode in a CDI system for desalination [112]. WMAC was developed by H₃PO₄ activation via single-step low-temperature pyrolysis. The SSA and the total pore volumes for WMAC and WMAC/MnFe₂O₄ were 618 m²/g and 483 m²/g, and 0.902 and 0.736 cm³/g, respectively. The composite high specific capacitance of 425 F/g was linked to the pseudo-capacitance synergistic effect and the influence of MnFe₂O₄ and the electric double layer. Desalination experiments conducted using 50 mL of NaCl, 10 mL/min, and 1.2 V, revealed a high nanocomposite’s electrosorption capacity of 29 mg/g, good recyclability, and fast desalination. A 93 % retention of ion uptake with a 5.5 % decrease in charge efficiency was observed after 4 cycles.

3.3. Animal-based electrode materials

In this section, progress was made in using animal-based material to prepare activated carbon.

Eggs: N-doped porous carbon obtained from egg whipped foam, i.e., activated egg whipped carbon (AEWC) by freeze-drying and secondary carbonization (Fig. 6 (a)) demonstrated a specific capacitance of 136.61 F/g compared to 92.49 F/g in the case of commercial supercapacitor activated carbon (SCAC) (Fig. 6 (b)). AEWC also had a unique micro-mesoporous structure with an outstanding SSA of 3277.96 m²/g and a total pore volume of 1.41 cm³/g compared to 2032.27 m²/g and 0.88 cm³/g for commercial SCAC. The AEWC electrode achieved a high salt adsorption capacity of 26.67 mg/g compared to 16.01 mg/g for SCAC and a rapid salt adsorption rate at 1.2 V batch mode in 500 mg/L NaCl solution (Fig. 6 (c)). Furthermore, the specific capacitance and shapes of CV curves using the AEWC barely altered after 2000 cycles, demonstrating strong cycling stability. Moreover, after five regeneration cycles had been completed, the AEWC electrode’s salt adsorption capacity is still...
well-preserved, suggesting strong desalination process reversibility [113].

Leather: Leather consists more than 80 % of collagen which has a high proportion of heteroatoms and a low ash concentration. A carbon aerogel was prepared through a one-step pyrolysis-activation by KOH treatment of leather waste. The leather waste-activated carbon (LWAC) has a SSA of 2523 m²/g and a specific capacitance of 97.57 F/g at 10 mV/s; these values are significantly higher than commercialised ACs (1425 m²/g and 5.62 F/g, respectively). For a solvent volume fixed at 80 mL, 10 mL/min, and 1.2 V, the adsorption capacity of LWACs at a concentration of 500 mg/L was 20.92 mg/g which is 7.4 times greater than that of commercial ACs (2.82 mg/g). Furthermore, the specific capacitance of the LWACs remained mostly unaltered after 1000 cycles, demonstrating excellent cycling stability. The one-step pyrolysis-activation method for electrode synthesis from LW would significantly contribute to the CDI system’s economic efficiency [114].

Chitosan: Chitosan, an abundantly available polysaccharide derived from shellfish [115], was used for the production of chitosan-based activated carbon (CTSAC) for use as CDI electrodes [116]. The electrode was produced by pyrolysis, followed by KOH activation. The CTSAC retained 10–30 % of the heteroatom material, mostly from the chitosan amino and hydroxyl groups. The resulting SSA was 2727 m²/g, and the electrical conductivity was 2.09 S/cm. The resulting material showed a SSA of 810 m²/g, a total pore volume of 0.8 cm³/g, a specific capacitance of 327 F/g, and a 100 % capacitance retention after 10,000 cycles of charge/discharge. Furthermore, a strong electrosorption capacity of 34.8 mg/g at 1.6 V using 500 mg/L NaCl sol. was obtained [121].

3.4. Industrial waste-based electrode materials

This section summarizes the progress done in fabricating activated carbon from various industrial wastes for CDI electrodes.

Polystyrene foam: Recent developments in plastic production and waste management predict that by 2050, nearly 12,000 Mt of plastic and other non-biodegradable waste will be accumulated in landfills and the natural environment [120]. Expanded polystyrene (EPS) foam waste was used as raw material to produce a hyper-crosslinked polymer, which acted as a scaffold to produce a new N-doped porous carbon. The resulting material showed a SSA of 810 m²/g, a total pore volume of 0.8 cm³/g, a specific capacitance of 327 F/g, and a 100 % capacitance retention after 10,000 cycles of charge/discharge. Furthermore, a strong electrosorption capacity of 34.8 mg/g at 1.6 V using 500 mg/L NaCl sol. was obtained [121].

Glucose and glucosamine: The CDI performance using nanoporous heteroatom-doped carbon derived from glucose and glucosamine using a refined salt templating approach was investigated [122]. The N-doped carbon activated with cesium...
acetate at 900 °C displayed a SSA of 2830 m²/g, a pore volume of 1.56 cm³/g, a specific capacitance of 132 F/g, and a salt adsorption capacity of 15.0 mg/g at 1.2 V in 5 mM aqueous NaCl. However, the electrode had a relatively low charge efficiency of 0.64; this can be linked to the high heteroatomic content, which affects the material’s surface chemistry. Microporous carbon spheres (CSs) produced from glucose by carbonization at different temperatures (Fig. 7 (a)) were investigated as electrode materials for CDI cells. Results showed that the SSA was increased from 271.5 m²/g to 361.1 m²/g by increasing the carbonization temperature from 700 to 800 °C, linked to complete sample carbonization. Further increase of the carbonization temperature to 900 °C resulted in a decrease in the SSA to 211.7 m²/g as a consequence of sintering and pore structural damage. CS800 exhibited the highest capacitance of 71 F/g at a scan rate of 5 mV/s, a high electrosorption capacity of 10.3 mg/g at 1.6 V (Fig. 7 (b)), and a complete regeneration after 20 ads/des cycles [123].

Polyaniline: Precursors that contain nitrogen compounds such as glucosamine hydrochloride [124], polyacrylonitrile [125], polyaniline (PAni) [126], and polypyrrole [127] have been a low-cost alternative for obtaining post-treatment N-doped AC. Activated carbons were developed using PAni as N-containing precursor, then doped with varying anions and investigated in the CDI [128]. The impact of polystyrene sulfonate (PSS), chloride (Cl), dodecylbenzene-sulfonate (DBS), and p-toluenesulfonate (PTS) as doping agents on the PAni activate carbon (PAC) performance as an electrode was investigated. The highest capacitance at 1.0 mV/s of 90 F/g was obtained for the PAC/PTS electrode, followed by PAC/DBS (89 F/g), and PAC/PSS (88 F/g). PAC/PTS also exhibited the highest electrosorption performance of 14.3 mg/g at 1.2 V, the highest charge efficiency (81–90 %), and the lowest energy consumption (3.8–4.2 kJ/g).

Novolac: Novolac is an industrial polymer that is produced in large quantities as a byproduct of several industries. Novolac can be used to obtain sub-micrometre sized nanoporous carbon beads to act as electrodes for CDI. The polymer beads were fabricated through a self-emulsifying system, then pyrolysis and CO₂ activation. The resulting material showed a SSA of 1905 m²/g, a total pore volume of 1.26 cm³/g, and a specific capacitance of 124 F/g at a specific current of 0.1 A/g. CDI tests performed at 1.2 V in 5 mM NaCl exhibited a salt sorption capacity of 8 mg/g. A salt adsorption capacity of 11.5 mg/g was achieved after electrode treatment with hydrogen; this treatment showed 80 % charge efficiency and higher stability (90 % after 100 cycles). Although the H₂ treated electrode’s salt adsorption capacity is similar to other high-performance commercial AC materials, the average deionization rate of 0.104 mg/g/s is far higher, surpassing commercial activated carbons [129].

3.5. Summary and discussion

Various biomass resources were used to fabricate carbon electrodes for CDI systems. Table 1 summarizes the progress of implementing bio-based electrodes in the CDI for water desalination. It can be observed from the table that most of the work focuses on plant-based precursors, such as rice plants, cotton, bamboo, and coconut, while much fewer works used animal-based and industrial-based electrodes. Therefore, considerable work can be done to consider these two types of wastes, especially they have...
<table>
<thead>
<tr>
<th>Type</th>
<th>Resource</th>
<th>Type of Carbon Electrode</th>
<th>Specific surface area (m²/g)</th>
<th>Specific capacitance (F/g)</th>
<th>Scan rate (mV/s)</th>
<th>Current density (A/g)</th>
<th>Salt removal percentage (%)</th>
<th>Initial cond. (µS/cm)</th>
<th>Initial conc. (mg/L)</th>
<th>Voltage (V)</th>
<th>Salt adsorption capacity (mg/g)</th>
<th>Average Salt adsorption rate (mg/g/s)</th>
<th>Charge eff. (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant-based</td>
<td>Cotton</td>
<td>carbon sponge</td>
<td>Batch</td>
<td>2680</td>
<td>109.9</td>
<td>10</td>
<td></td>
<td>500</td>
<td>1.2</td>
<td>16.1</td>
<td>77</td>
<td>[79]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugarcane</td>
<td>Biocar</td>
<td>Batch</td>
<td>1019</td>
<td>208</td>
<td>5</td>
<td></td>
<td>292</td>
<td>1.2</td>
<td>28.9</td>
<td>[80]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rice plant</td>
<td>Biochar</td>
<td>Single pass</td>
<td>1839</td>
<td>120.5</td>
<td>5</td>
<td></td>
<td>116</td>
<td>1.2</td>
<td>8.11</td>
<td>0.0153</td>
<td>48</td>
<td>[85]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shiitake mushrooms</td>
<td>AC</td>
<td>Batch</td>
<td>247.6</td>
<td>1</td>
<td></td>
<td></td>
<td>1050</td>
<td>1.2</td>
<td>12.9</td>
<td>[89]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugarcane fly ash</td>
<td>AC</td>
<td>Batch</td>
<td>350</td>
<td>55</td>
<td>1</td>
<td></td>
<td>1250</td>
<td>1.2</td>
<td>5.3</td>
<td>[139]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soybean shell</td>
<td>N-doped porous carbons</td>
<td>Batch</td>
<td>1016.2</td>
<td>215.3</td>
<td>0.25</td>
<td></td>
<td>82.3</td>
<td>40</td>
<td>15.5</td>
<td>0.0148</td>
<td>[46]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bamboo/MnO₂</td>
<td>AC</td>
<td>Batch</td>
<td>17470</td>
<td>158.2</td>
<td>10</td>
<td></td>
<td>105</td>
<td>1.2</td>
<td>10.3</td>
<td>[91]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>date palm/MnO₂</td>
<td>AC</td>
<td>Batch</td>
<td>1224</td>
<td>259</td>
<td>10</td>
<td></td>
<td>1200</td>
<td>0.6</td>
<td>17.8</td>
<td>55</td>
<td>[92]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loddia sponge</td>
<td>AC</td>
<td>Batch</td>
<td>1819</td>
<td>93</td>
<td><90</td>
<td></td>
<td>1025</td>
<td>29.2</td>
<td>22.5</td>
<td>0.0148</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lotus leaf</td>
<td>Carbon Nanosheets</td>
<td>Batch</td>
<td>4482</td>
<td>289</td>
<td>0.5</td>
<td></td>
<td>1085</td>
<td>2000</td>
<td>65</td>
<td>5</td>
<td>[98]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peanut shell/MnS₂</td>
<td>AC</td>
<td>Batch</td>
<td>13.34</td>
<td>113</td>
<td>10</td>
<td>35</td>
<td>2050</td>
<td>1000</td>
<td>8.89</td>
<td>[103]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Almond shell</td>
<td>AC</td>
<td>Batch</td>
<td>452</td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>1.2</td>
<td>19.2</td>
<td>[49]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinecones</td>
<td>P-doped porous carbon</td>
<td>Batch</td>
<td>1176</td>
<td>238</td>
<td>5</td>
<td></td>
<td>970</td>
<td>500</td>
<td>1.2</td>
<td>14.62</td>
<td>[132]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine</td>
<td>Porous carbon</td>
<td>Batch</td>
<td>1016</td>
<td>94.16</td>
<td>10</td>
<td></td>
<td>500</td>
<td>2</td>
<td>19.43</td>
<td>42</td>
<td>[102]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coconut shell</td>
<td>AC / CNT</td>
<td>Batch</td>
<td>630</td>
<td>90.2</td>
<td>20</td>
<td></td>
<td>522</td>
<td>200</td>
<td>14.1</td>
<td>14.1</td>
<td>[106]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tamarind shell</td>
<td>AC</td>
<td>Batch</td>
<td>410</td>
<td>174.5</td>
<td>10</td>
<td></td>
<td>1280</td>
<td>600</td>
<td>18.8</td>
<td>83</td>
<td>[109]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jackfruit</td>
<td>AC</td>
<td>Batch</td>
<td>19559</td>
<td>307</td>
<td>5</td>
<td>95</td>
<td>72.2</td>
<td>30</td>
<td>1.18</td>
<td>0.0148</td>
<td>[110]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date seeds</td>
<td>AC</td>
<td>Batch</td>
<td>1020.85</td>
<td>400</td>
<td>10</td>
<td></td>
<td>512</td>
<td>250</td>
<td>22.2</td>
<td>86</td>
<td>[96]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Citrus peel/ZnCl₂</td>
<td>AC</td>
<td>Batch</td>
<td>323</td>
<td>120</td>
<td>1</td>
<td></td>
<td>1050</td>
<td>500</td>
<td>16</td>
<td>0.0167</td>
<td>61</td>
<td>[111]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Watermelon</td>
<td>AC</td>
<td>Batch</td>
<td>483</td>
<td>425</td>
<td>10</td>
<td></td>
<td>510</td>
<td>250</td>
<td>29</td>
<td>96</td>
<td>[112]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MnFe₂O₄</td>
<td>AC</td>
<td>Batch</td>
<td>304</td>
<td>410</td>
<td>5</td>
<td>83.4</td>
<td>1000</td>
<td>1.2</td>
<td>68.4</td>
<td>24</td>
<td>[107]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal-based</td>
<td>Coconut shell/MnO₂</td>
<td>AC</td>
<td>Batch</td>
<td>3277.96</td>
<td>136.61</td>
<td>100</td>
<td></td>
<td>500</td>
<td>1.2</td>
<td>26.67</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Egg white</td>
<td>N-doped porous carbons</td>
<td>Batch</td>
<td>3277.96</td>
<td>136.61</td>
<td>100</td>
<td></td>
<td>500</td>
<td>1.2</td>
<td>26.67</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leather wastes</td>
<td>Carbon Aerogel</td>
<td>Batch</td>
<td>2523</td>
<td>132.2</td>
<td>2</td>
<td></td>
<td>500</td>
<td>1.2</td>
<td>20.29</td>
<td>[114]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chitosan</td>
<td>AC</td>
<td>Batch</td>
<td>2727</td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>1.2</td>
<td>14.12</td>
<td>0.00567</td>
<td>[116]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glucose and Glucosamine</td>
<td>Heteroatom Doped Carbon</td>
<td>Single pass</td>
<td>2830</td>
<td>132</td>
<td></td>
<td></td>
<td>292</td>
<td>1.2</td>
<td>15</td>
<td>64</td>
<td>[122]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polystyrene foam</td>
<td>N-doped porous carbons</td>
<td>Batch</td>
<td>810</td>
<td>327</td>
<td>1</td>
<td></td>
<td>500</td>
<td>1.6</td>
<td>34.8</td>
<td>[120]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td>carbon spheres</td>
<td>Batch</td>
<td>361.1</td>
<td>71</td>
<td>5</td>
<td></td>
<td>200</td>
<td>250</td>
<td>1.6</td>
<td>10.3</td>
<td>[123]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermoplastics</td>
<td>Carbon Aerogel</td>
<td>Single pass</td>
<td>1785</td>
<td>173</td>
<td>0.5</td>
<td>99.73</td>
<td>50</td>
<td>1.2</td>
<td>50</td>
<td>[140]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Novolac</td>
<td>carbon beads</td>
<td>Single pass</td>
<td>1905</td>
<td>124</td>
<td>0.1</td>
<td></td>
<td>29.2</td>
<td>1.2</td>
<td>11.5</td>
<td>0.104</td>
<td>40</td>
<td>[129]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>polyaniline</td>
<td>AC</td>
<td>Batch</td>
<td>1484</td>
<td>90</td>
<td>1</td>
<td></td>
<td>600</td>
<td>1.4</td>
<td>14.9</td>
<td>0.033</td>
<td>90</td>
<td>[128]</td>
<td></td>
</tr>
</tbody>
</table>
already been applied in several applications and proved efficient [130,131]. By looking at the current progress, it can be observed that the best performing electrodes were those doped with heteroatoms, such as nitrogen or phosphorus [46,132], or those formed composites with metal nanoparticles, such as MnO2 [91,107] and MnFe2O4 [112]. These results prove the effectiveness of heteroatom doping and forming composites with metal nanoparticles in increasing the performance of biomass/waste-based electrodes. However, other types of heteroatoms that proved their usefulness, such as boron [133] and sulfur [134], should be tested with bio-based carbon electrode materials. The co-doped carbon materials in which two types of heteroatoms are added together to the carbon electrode [135] is also a promising process to enhance the electrode’s performance. Other types of nanoparticles should be investigate with biomasses/waste-based carbon materials, such as TiO2 [30], CeO2 [136], MoS2 [137], and ZnO [138]. Investigating these types of composites can significantly increase the performance and applicability of biomass and waste-based electrodes in CDI applications.

4. Use of bio-based electrodes in CDI for wastewater treatment

Another important application of CDI systems is wastewater treatment. Due to industrial and population growth in many countries worldwide, the amount of wastewater produced from the industrial and domestic sectors increases yearly. Given this situation, it is important to establish feasible and effective wastewater treatment technologies. CDI arises as a potentially cheap and effective alternative to current wastewater treatment technologies such as reverse osmosis [141,142] and nanofiltration [143]; as well as other emerging technologies such as microbial fuel cells [144–148]. Using abundant and cost-effective carbon precursors for producing CDI carbon electrodes will make the technology more attractive. This section summarises and discusses the application of bio-based electrodes in CDI systems for wastewater treatment.

4.1. Heavy metal ions removal

The presence of heavy metal ions in wastewater resulted in severe health and environmental effects. For example, increased amounts of lead in drinking water may result in kidney problems, muscle and joint pains; while elevated amounts of chromium can cause lung tumors [149,150]. Heavy metal ions include chromium, copper, nickel, lead, arsenic, zinc, mercury, and cadmium. The removal of such heavy metal ions is essential from the health and environmental point of view. This section summarises the progress in using bio-based CDI cells for the removal of heavy metal ions.

4.1.1. Chromium

Peanut shell: Activated carbon derived from peanut shell (PSAC) (Fig. 8 (a)) and its iron oxide composite (Fe3O4/PSAC) were produced and examined as a potential CDI electrode for chromium ions’ removal from wastewater (Fig. 8 (b)). Fe3O4/PSAC composite had higher Cr(VI) removal efficiency compared to pure PSAC. Even though the smaller SSA of Fe3O4/PSAC [525 m2/g] compared with PSAC (751 m2/g), the composite adsorbent showed better adsorption and recyclability owing to Fe3O4 magnetic activity (Fig. 8 (c)). Moreover, BET and Fe3O4/PSAC electrochemical analysis proved its mesoporous structure and high pseudo-capacitance of 610 F/g (10 mV/s), with good stability and reduced internal resistance. CDI removal applications using Fe3O4/PSAC showed total removal of Cr(VI) of 9.9 % with an excellent electrosorption capacity of 24.5 mg/g at pH 6.5, as shown in Fig. 8 (d) [151].

Tea waste: Microporous activated carbon was developed by thermal and chemical modification of tea waste biomass (TWBAC) to be used as electrode material in CDI for chromium ions’ removal and F removal [152]. The electrode was observed to have a peak electrosorption capacity for F and Cr(VI) of 0.74 and 0.77 mg/g at 10 mg/L and 2.49 and 2.83 mg/g at 100 mg/L, respectively. After simultaneous electrosorption of Cr(VI) and F, the TWBAC electrode was successfully regenerated. Compared to monovalent F-, the electrosorption selectivity of the divalent chromate allowed a higher removal of chromium ions.

Rice husk: Acid-activated carbon from rice husk was employed as a carbon precursor for electrodes to be used in capacitive deionization. The sulphuric acid-treated rice husk waste activated carbon (RHWBAC) used for the removal of Cr(VI) displayed an electrosorption capacity of 2.83 mg/g at 100 mg/L feed concentration at 1.2 V. The maximum Cr(VI) removal for 10 mg/L feed concentration was reported to be 85 %. The results indicated that the electrosorption process fits the Langmuir isotherm model, Redlich Peterson isotherm, and the Pseudo kinetic first-order model. Besides, the computational fluid dynamics (CFD) analysis of the square CDI layout reveals that the stagnant regions decrease with increasing feed flow rates. Furthermore, following Cr(VI) sorption, the RHWBAC electrode’s successful regeneration was recorded [153].

Corn cob waste: A porous carbon with a 3D honeycomb-like composition (3DHPC) was fabricated from corn cob waste by hydrothermal carbonization combined with KOH activation for chromium removal using a CDI system [154]. The electrode showed a hierarchical mesoporous and macroporous structure, a SSA of 952 m2/g, a specific capacity of 452 F/g, and a removal efficiency of 91.58 % at 1.0 V using 30 mg/L Cr(VI) solution. Chromium removal efficiency was considerably increased to 96.20 % at an applied voltage of 2.0 V. The improved adsorption arises from the affinity between chromium (VI) ions and the electrode.

Red oak: Red oak biocharcoal, a relatively cheap and very conductive electrode material, was used for chlorine and chromium extraction from leather treatment wastewater. Biocharcoal treated with KOH resulted in an adsorption capacity of 13.79 mg/g and a specific surface area of 303.59 m2/g; compared to charcoal treated with Fe2O3, these values represent an increment of 40 % and 80 %, respectively. After 10 cycles of the CDI system operation, the removal rates of CI− and Cr2+ in leather processing wastewater approached 86 % and 100 %, respectively. The KOH-activated electrodes resulted in good regeneration performance after 2.5 cycles; however, the adsorption capacity decreased from 10.77 to 10.57 mg/g after regeneration [48]. The electrode obtained could potentially replace other electrodes for removing chlorine and chromium ions.

Bael fruit: AC from Bael fruit shell was used to form a bicomposite with polyvinyl alcohol (PVA) in a ratio of 1:4 for the removal of Cr (VI) ions. PVA is a synthetic organic material consisting of a non-crystalline polymer with biodegradable nature and excellent electrical conductivity features. The synthesized AC layer has a mesoporous and macroporous composition with a large SSA of 617.72 m2/g. It also showed a high adsorption capacity of 294.5 mg/g and 100 % removal efficiency at 15 V [155]. The bio-composite electrode could be remarkably used for wastewater treatment owing to its suitable biodegradability and electrical conductivity.

4.1.2. Lead

Chicken feather: Porous carbons from chicken feathers (CF) was synthesized and chemically activated by KOH under a nitrogen stream for 3 h [76]. The developed materials were employed to eliminate lead from a lead (II) nitrate solution in a CDI cell. The
untreated carbon surface area was estimated to be 642 m²/g which increased to 1642 m²/g after KOH activation at 800 °C. The lead removal test conducted using a CDI cell, including the manufactured carbon electrode and 100 mg/L Pb(NO₃)₂ solution showed a removal percentage of 81 % and an electrosorption capacity of 4.1 mg/g at (applied potential of 1.2 V and a flow rate of 5 mL/min).

4.1.3. Arsenic

Thermoplastic waste: A novel, non-invasive, and chemical-free approach was proposed to manufacture highly porous carbon aerogels from thermoplastic waste by eliminating the current sol–gel method's drawbacks. The new method involves three steps: (1) hydrothermal carbonization, (2) freeze-drying, and (3) post-pyrolysis; the produced material was immobilized on a locally accessible, biocompatible, and flexible jute thread substrate. The specific surface area of ACs was 1785 m²/g with a specific capacitance of 173 F/g at 0.5 A/g. Moreover, without applying any voltage, the electrode was still able to extract salt and heavy metal pollutants from the feedstock solution, and complete removal was achieved after applying an additional voltage of 1.2 V. Using concentrations below 1000 mg/l, the cell achieved a high arsenic removal percentage of 99.79 % and that decreased to 95.21 % at higher concentrations up to 2000 mg/l [140].

4.1.4. Other heavy metal ions:

Polyvinyl chloride plastic waste: S, N-co-doped carbon materials (sN-C) was developed from polyvinyl chloride (PVC) plastic waste and examined as CDI electrode for removing heavy metal ions (Cd²⁺, Ni²⁺, Co²⁺, Pb²⁺, Fe²⁺, and Cu²⁺) [156]. For a heteroatom concentration of 13.30 % S and 4.55 % N, the SSA was 1230 m²/g, the capacitance was 290.2 F/g (at 1.0 A/g), the removal efficiency was 94–99 %, and the capacity was 36–62 mg/g (Fig. 9). Experiments revealed the sN-C electrode’s high efficiency and impressive stability throughout five consecutive adsorption/desorption cycles.

4.2. Nutrients removal

In many cases, plant nutrients can be found in considerable amounts in wastewater. These nutrients include ions that contain nitrogen, phosphorus, and potassium, such as nitrite (NO₂⁻) [157], nitrate (NO₃⁻) [158], and phosphate (PO₄³⁻) [159]. Bacterial cellulose (BC) is an available, inexpensive, and sustainable resource, and carbonized bacterial cellulose (CBC) is an excellent base material for carbon electrodes. CBC-based electrodes coated with proportions of sulfosuccinate acid (SA) and glutaric acid (GA) were developed for nitrate removal in CDI cells. The specific capacitances of CBC-GA and CBC-SA were 124.23 and 169.41 F/g. CBC-SA electrode displayed the highest salt adsorption capacity of 14.56 mg/g and
71.01% nitrate removal efficiency. Increasing the applied voltage from 0.8 to 1.2 V resulted in increasing the adsorbed anions. The findings showed that the polymer coating resulted in an excellent total ion removal efficiency and improved the nitrite's removal \[160\].

4.3. Summary and discussion

Several studies investigated the use of bio-based CDI electrodes for wastewater treatment, as seen in Table 2. It is clear from the table that doping the bio-based carbon electrodes with the transition metals such as Fe$_3$O$_4$ significantly improved their adsorption capacity [151]. The same behaviour is noticed in the case of heteroatoms [156]. It can be observed from the table that most works focused on the removal of heavy metals from wastewater, and most of these works investigated the removal of chromium ions yielding removal percentages higher than 80%. Despite the importance of chromium removal, further investigations for the removal of other heavy metal ions, such as mercury, nickel, copper, and cadmium, are still needed. Furthermore, few studies focused on removing nutrients from wastewater, therefore, more work should be done to investigate the suitability of waste-based electrodes for this application. Other types of contaminants that can be studied include ammonia, nitrate, phosphate, and lithium.

The main finding of the application of the Biobased CDI electrodes in the desalination (salt adsorption capacity) and wastewater treatment (Cr ion removal) can be summarized in Fig. 10. As being clear from the figure that the different bio-based activated carbon materials demonstrated a high salt adsorption capacity that reached more than 25%, Fig. 10a, and an excellent removal of the Cr ions from the wastewater that reached 100%, Fig. 10b.

5. Promising bio-based electrodes for CDI

Due to the high similarity in the operation mechanism between CDI cells and supercapacitors, the same electrode materials can be used in both applications. Several studies focused on bio-based supercapacitor electrode materials, which are considered promising candidates for CDI applications. MnO$_3$Si hybridized carbon’s electrode derived from natural bamboo leaves was used in supercapacitors [162]. The electrode’s capacitance was 162.2 F/g and the specific surface area was 300.3 m2/g. After 10,000 charge/discharge cycles, 85% capacitance retention was recorded. Porous AC micro sheets from pomelo seeds were developed and investigated in supercapacitors [163]. The pomelo seeds-based AC electrode exhibited a specific capacitance of 240 F/g and a specific surface area of 4665.2 m2/g and a 100% capacitance retention after 10,000 cycles. Similarly, a pomelo peel-derived carbon was prepared by activation with N and Co in one-pot pyrolysis [164]. The electrode exhibited high surface area, high specific capacitance (325 F/g), and excellent cycling stability, making it a promising electrode for CDI application. Using the same material, Yang et al. [165] reported for the first time the production of tri-modal porous carbon with an outstanding capacitance of 550 F/g at 0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>Removed ion</th>
<th>Electrode material</th>
<th>Applied voltage (V)</th>
<th>Initial ion concentration (mg/L)</th>
<th>Removal percentage %</th>
<th>Salt adsorption capacity (mg/g)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy metal</td>
<td>Cr(VI)</td>
<td>Peanut Shell/Fe$_3$O$_4$ (Fe$_3$O$_4$/PSAC)</td>
<td>1.2</td>
<td>200</td>
<td>99.9</td>
<td>24.5</td>
<td>[151]</td>
</tr>
<tr>
<td></td>
<td>Cr(VI)</td>
<td>Rice Husk (RHWBAC)</td>
<td>1.2</td>
<td>100</td>
<td>85</td>
<td>2.8316</td>
<td>[153]</td>
</tr>
<tr>
<td></td>
<td>Cr(VI)</td>
<td>Corn cob (Porous carbon)</td>
<td>2</td>
<td>30</td>
<td>96.2</td>
<td>100</td>
<td>[154]</td>
</tr>
<tr>
<td></td>
<td>Cr(VI)</td>
<td>Bael Fruit (AC)</td>
<td>1.5</td>
<td>10</td>
<td>100</td>
<td>294.5 (using methylene blue number)</td>
<td>[155]</td>
</tr>
<tr>
<td></td>
<td>Cr(VI)/F</td>
<td>Tea Waste (AC)</td>
<td>1.2</td>
<td>10</td>
<td>88.5 / 85.2</td>
<td>0.77 / 0.74</td>
<td>[152]</td>
</tr>
<tr>
<td></td>
<td>Cr(III)/Cl</td>
<td>Red Oak (bio charcoal)</td>
<td>1.2</td>
<td>2.03 / 4665.2</td>
<td>86.7 / 100</td>
<td>13.79 (for both ions together)</td>
<td>[161]</td>
</tr>
<tr>
<td></td>
<td>Pb$^{2+}$/Cl</td>
<td>Chicken feathers (Porous carbon)</td>
<td>1.2</td>
<td>100</td>
<td>81</td>
<td>4.1</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td>Fe, Co, Ni, Cu,</td>
<td>Polyethylene chloride plastic</td>
<td>1.5</td>
<td>50</td>
<td>94–99</td>
<td>56.3/36.4/55.2/51.0/57.9/36.6</td>
<td>[156]</td>
</tr>
<tr>
<td></td>
<td>Pb, Cd</td>
<td>(Sn-C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrient</td>
<td>NO$_3^-$</td>
<td>Bacterial cellulose (CBC)</td>
<td>0.8–1.2</td>
<td>24.5</td>
<td>71</td>
<td>14.56</td>
<td>[160]</td>
</tr>
</tbody>
</table>

Fig. 9. (a) The electrosorption experiment at 1.5 V and 50 mg/l and (b) the CDI Ragone plot of the three synthesized electrode materials in Fe$^{2+}$ solution, (c) The SAC obtained for each of the six heavy metal ions using NS-C electrode [156], open access.
A/g for biochar obtained from pomelo endothelium (prepared by metal ion impregnation and molten KOH activation). The resulting SSA was 1265 m²/g; the material showed a hierarchical porous structure and high graphitization level. Hierarchical nano-micro porous carbon spheres prepared using composites derived from rice straw exhibited a SSA of 1122 m²/g with a specific capacitance of 337 F/g [166]. Simple chemical activation synthesized a novel hierarchical carbon with a high surface area (2742 m²/g) from cashew nut husk biomass [167]. The sample exhibited a superior capacitive performance (305.2 F/g) and 97.1 % capacity retention after 4000 charge–discharge cycles. Biochar electrodes derived from Cladophora glomerata macroalgae were fabricated with well-ordered micro/macro porous structure and have high carbon content [168]. The electrode displayed SSA of 354 m²/g with a specific capacitance of 376.7 F/g, as well as strong stability showing only a 0.8 % reduction in capacitance after 5000 cycles. In a similar work, novel biochar interconnected 3D pore structure electrode derived from Cladophora glomerata macroalgae was synthesized [169]. The obtained electrode displayed SSA of 957 m²/g and a specific capacitance of 418 F/g, along with a stable cycling performance of 93.1 % after 10,000 cycles. A novel algae-derived nitrogen-containing porous carbon was developed and used as electrode material [170]. The porous carbon has a very high SSA of 1538.7 m²/g and a specific capacitance of 287.7 F/g with cycling stability of 98 % capacitance retention after 8000 cycles. In other study, a hierarchical porous CO₂-activated carbon aerogel was prepared from cellulose with desirable macropores, mesopores, and micropores [171]. The aerogel had SSA of 1364 m²/g and a specific capacitance of 328 F/g, and well stability of 96 % capacitance retention after 5000 charge/discharge cycles. A hierarchical porous carbons with high SSA and total pore volumes were produced using a sustainable one-pot structure based on products from biomass [172]. The methodology involved thermal treatment of biomass (glucose, glucosamine, soy flour, and microalgae) using a soft activating agent (potassium oxalate) and a hard substrate (calcium carbonate nanoparticles). The materials fabricated at 800 °C have large SSA within a range of 1800–3100 m²/g. Huang et al. [173] produced a hierarchical porous carbon using waste animal bones and evaluated its performance as a supercapacitor electrode. The material demonstrated SSA of 2157 m²/g which led to a good speci-
fic capacitance value of 185 F/g at 0.05 A/g. Table 3 summarizes some of biomass and waste-based supercapacitors electrodes performance. These electrodes are promising candidates for high-performance CDI systems.

6. Comparison between bio-based electrodes and commercial ones

Carbon electrodes produced from bio-based materials display good potential as a low-cost alternative to relatively expensive conventional carbon nanomaterials, such as CNTs, CNFs, and graphene. However, this cheaper alternative may show lower performance due to the non-defined structures. This section compares bio-based electrodes and conventional carbon electrodes based on resource availability, ease of manufacture, cost, material specification, and performance.

6.1. Resource availability

The availability of the carbon precursor is a significant factor that must be considered in the CDI systems. A more available source means a cheaper source as well. Activated carbon is currently the most used CDI material due to its high porosity, high surface area, and high adsorption capacity. In general, activated carbon derived from natural or biomass sources, such as coconut shells, tea leaves, and wood, is widely available worldwide. The carbonization of synthetic polymers can also derive AC; however, these polymers have many different applications other than electrode fabrication, impacting their availability. The availability of an electrode material with high salt adsorption capacity is one of the main challenges that restrict CDI technology's scaling up. The massive availability of carbon materials extracted from biomass residues can produce CDI electrodes with high electroadsorption capacity. On the other hand, synthetic carbon nanomaterials show a lower availability than bio-derived materials, reflecting the commercial price.

6.2. Ease of manufacture

AC powder is primarily synthesized through pyrolysis of carbon source materials such as wood and nutshell below 1000 °C. The source carbon materials are initially pyrolyzed below 800 °C, and then activated between 950 and 1000 °C. Chemical activation also can be carried out using a salt, an acid, or an alkali and then carbonized at temperatures between 400 and 700 °C. Carbon aerogel fabrication is more complex, starting with the sol–gel polymerization of resorcinol with formaldehyde creating cross-linked hydrogels that are dried out to form the precursor aerogel. The aerogel is subjected to pyrolysis at high temperatures, producing the final carbon product. Carbon nanotube fabrication methods include chemical vapor deposition, arc discharge, high-pressure CO disproportionation, and laser ablation. Most of these procedures are expensive as they occur under vacuum conditions. On the other hand, bio-based activated carbon can be produced using ease and simple methods compared with the aforementioned methods that proved the feasibility of activated carbon from biomass sources as a CDI electrode material.

6.3. Cost

Previous studies proved that high-performance AC could be obtained from wastes like coconut shell, peanut shell, or almond shell, and other biomass materials with minimum or negligible cost. Moreover, activated carbon can be obtained from animal waste such as eggshells, animal hair, or animal bones. March and Reinoso stated that bio-based derived carbon could be available at a cost of 0.50 €/kg. On the other hand, petroleum residues, coal, lignite, peat, and polymers used as precursors for conventional production of AC are more expensive and nonrenewable, while graphene powder cost ranges between 50-200 €/kg, depending on the quality and volume.

6.4. Material specification

The electrode material's surface characteristics, such as the SSA, pore size distribution, pore structure, and surface functional groups, affect the electrodes' electroadsorption capacity. Studies reported that bio-based carbons display high specific surface area, good electrical conductivity, controlled pore architecture, and allow high specific capacitance values. Additionally, doped carbon materials derived from biomass have acquired extensive CDI applications due to their smaller ion transfer and...
higher surface area, ensuring a high specific capacitance and ionization capacity [191–193]. Sometimes, high electrical resistance and low capacitance are found in biomass-derived electrodes. Pore structure modification or combined oxygenated groups addition are among the strategies used to solve this major drawbacks [194,195]. Some studies have revealed that graphene can reach a theoretical SSA of 2630 m²/g, a much greater value than the 900 m²/g for carbon black or the 1315 m²/g for carbon nanotubes [196,197]. Although graphene is an excellent adsorbent, it can agglomerate in the redox process, decreasing its SSA and dramatically influencing the conductivity and the ion transfer rate [198,199]. Carbon nanotubes are also considered strong applicants for CDI, owing to their high aspect ratio, high surface area, and extraordinary thermal, electrical, and mechanical properties [200,201]. It is reported that the specific capacitance of carbon nanotubes is lower than that of activated carbon, but their conductivity is higher [57]. Furthermore, carbon aerogel achieves excellent properties, but its progress is limited due to its high cost and complicated production process.

6.5. Performance

As previously stated, AC is currently the most widely used material for CDI, given its high porosity, facilitating the absorption of ions and water-polluting species. The highest salt absorption capacities were achieved using biobased activated carbons extracted from Loofa sponge, watermelon peel, and cotton waste, resulting in 22.5 mg/g [104], 17.38 mg/g [202], and 16.1 mg/g [79], respectively. These values are comparable and even higher in some cases than the corresponding from conventional electrode materials such as graphene (22.27 mg/g) [203], carbon nanotubes sponge (4.3 mg/g) [204], and carbon aerogels activated by CO2 (8.4 mg/g) [205]. Although carbon materials generally prove their excellent properties in many applications, including electrode manufacturing, their synthesis and cost play a crucial role in the market. Activated carbon is cheap, easy to obtain, and possesses most of the required CDI applications’ required properties, making it the most used material for CDI electrodes. Table 4 shows a performance comparison between biobased carbon electrodes and some conventional carbon nanomaterials as CDI electrodes.

6.6. Summary and discussion

Bio-based derived carbon features wide resource availability, ease of fabrication, scalable, and cheap. However, these materials need nano-scale modifications to overcome their poor performance. On the other hand, conventional carbon nanomaterials have a lower resource availability, harder fabrication, and higher production cost. Still, in return, they show better material specifications and overall better capacitive performance. These results show the cost-performance tradeoff, which should be considered when choosing a CDI system (Table 5).

7. Recommendation and future perspectives

Despite the increasing number of publications on the development of bio-based carbon electrodes for CDI applications, there

Table 4

Comparison between the performance of biomass/waste-based electrode materials and conventional electrode materials in CDI systems.

<table>
<thead>
<tr>
<th>Type</th>
<th>Biomass</th>
<th>Specific surface (m²/g)</th>
<th>Scan rate (mV/s)</th>
<th>Specific capacitance (F/g)</th>
<th>Initial salt concentration (mg/L)</th>
<th>Voltage (V)</th>
<th>SAC (mg/g)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass/waste-derived electrodes</td>
<td>Pomelo peel meso/microporous carbon</td>
<td>2726</td>
<td>1</td>
<td>207.0</td>
<td>1000</td>
<td>1.4</td>
<td>20.78</td>
<td>[192]</td>
</tr>
<tr>
<td></td>
<td>Wasted coffee grounds meso/microporous carbon</td>
<td>1856</td>
<td>10</td>
<td>180.3</td>
<td>292</td>
<td>1.4</td>
<td>16.50</td>
<td>[206]</td>
</tr>
<tr>
<td></td>
<td>Coconut shells mesoporous AC</td>
<td>1040</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>1.6</td>
<td>3.75</td>
<td>[207]</td>
</tr>
<tr>
<td></td>
<td>Raw cotton carbon sponge</td>
<td>2680</td>
<td>0.5</td>
<td>240.0</td>
<td>500</td>
<td>1.2</td>
<td>16.10</td>
<td>[79]</td>
</tr>
<tr>
<td></td>
<td>Woody biomass activated biochar</td>
<td>1675</td>
<td>–</td>
<td>–</td>
<td>500</td>
<td>1.2</td>
<td>5.39</td>
<td>[208]</td>
</tr>
<tr>
<td></td>
<td>Soybean shell N-doped porous carbon</td>
<td>1036</td>
<td>2</td>
<td>165.0</td>
<td>1000</td>
<td>1.2</td>
<td>43.3</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td>Watermelon peel meso/microporous carbon sheets</td>
<td>2360</td>
<td>1</td>
<td>224.0</td>
<td>500</td>
<td>1.4</td>
<td>17.38</td>
<td>[202]</td>
</tr>
<tr>
<td></td>
<td>Polystyrene foam N-doped porous carbon</td>
<td>810</td>
<td>327</td>
<td>500</td>
<td>1.6</td>
<td>34.8</td>
<td>121</td>
<td>[212]</td>
</tr>
<tr>
<td>Conventional electrode materials</td>
<td>3D Graphene</td>
<td>124</td>
<td>1</td>
<td>219.6</td>
<td>572</td>
<td>2.0</td>
<td>29.6</td>
<td>[209]</td>
</tr>
<tr>
<td></td>
<td>Ordered mesoporous carbons</td>
<td>844</td>
<td>1</td>
<td>133</td>
<td>25</td>
<td>1.2</td>
<td>0.68</td>
<td>[210]</td>
</tr>
<tr>
<td></td>
<td>Carbon aerogels</td>
<td>400–1100</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>3.33</td>
<td>[211]</td>
</tr>
<tr>
<td></td>
<td>Carbon nanotube</td>
<td>153</td>
<td></td>
<td></td>
<td>3500</td>
<td>1.2</td>
<td>9.35</td>
<td>[212]</td>
</tr>
<tr>
<td></td>
<td>Carbon nanofiber</td>
<td>186</td>
<td>10</td>
<td>222.3</td>
<td>500</td>
<td>1.2</td>
<td>1.91</td>
<td>[189]</td>
</tr>
<tr>
<td></td>
<td>Carbon nanospheres</td>
<td>1321</td>
<td>1</td>
<td>243</td>
<td>500</td>
<td>1.6</td>
<td>5.81</td>
<td>[213]</td>
</tr>
<tr>
<td></td>
<td>Reduced graphene oxide</td>
<td>137.4</td>
<td>112</td>
<td>40</td>
<td></td>
<td>2.0</td>
<td>1.51</td>
<td>[214]</td>
</tr>
</tbody>
</table>

Table 5

A general comparison between bio-based carbon and conventional carbon nanomaterials.

<table>
<thead>
<tr>
<th>Criteria (worst 1–5 best)</th>
<th>Biomass/waste-based carbon</th>
<th>Conventional carbon nanomaterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource availability</td>
<td>Widely available (5)</td>
<td>Less availability (4)</td>
</tr>
<tr>
<td>Ease of fabrication</td>
<td>Easy fabrication, suitable for large-scale production (5)</td>
<td>Harder fabrication, challenging to large-scale produce (3)</td>
</tr>
<tr>
<td>Cost</td>
<td>Cheap (5)</td>
<td>Generally more expensive (2)</td>
</tr>
<tr>
<td>Material specifications (Surface area, porosity)</td>
<td>Good specifications, but needs modifications (3)</td>
<td>Great specifications (4)</td>
</tr>
<tr>
<td>Performance</td>
<td>High performance (4)</td>
<td>Excellent performance (5)</td>
</tr>
</tbody>
</table>
are still many research topics that worth investigating to deepen the practical application of such materials. These topics include:

- No pilot-scale CDI systems using bio-based carbon electrodes tested. Research on CDI bio-based carbon electrodes will stay far from the large-scale application if no real demonstrations of its operational performance are available.
- Performing a long-term economic analysis of bio-based CDI systems and comparing it with those using conventional carbon electrodes is essential to give a deeper insight into the performance-cost tradeoff of such systems.
- Although massive work has been done on investigating the effect of doping bio-based carbon materials with heteroatoms on the performance of supercapacitors [215–217], few works have been done on CDI [109]. Therefore, it is recommended to investigate such an effect on the performance of the CDI.
- Composites of carbon materials with metal nanoparticles increased their capacitive and salt removal performance [218,219]. Doping bio-based carbon materials with metal nanoparticles such as ZnO, MoS2, and TiO2 were not tested yet; therefore, further investigation on this topic is recommended.
- MXene is a two-dimensional material that exhibited high performance in CDI applications [220,221], and its composite with carbon improved its performance [222,223]. Preparing MXene composite with bio-based carbon materials with and without doping with heteroatoms is expected to improve the performance of the CDI.
- Novel CDI cell structures, such as membrane CDI and flow-electrode CDI, were not tested using bio-based carbon electrodes. This investigation may result in an enhancement in the cells’ performance and a reduction of the system’s capital cost.

8. Conclusions

This work reviews the progress in applying bio-based carbon electrodes in the CDI systems. The different fabrication processes of bio-based electrodes of the CDI and their implementation for water desalination and wastewater treatment are summarized. It was found that most of the studies focused on plant-based wastes, and among the different electrodes, those included a heteroatom doping or metal nanoparticles showed the highest performance. Regarding the application of the bio-based carbon CDI electrodes in wastewater treatment, the research focused on heavy metal removal (focusing on chromium). Bio-based carbon electrodes were compared to conventional carbon electrodes in terms of resource availability, ease of manufacture, cost, material specification, and CDI performance. The bio-based electrodes demonstrated better features in terms of availability, price, and fabrication, while they show a comparable performance compared to conventional carbon-based electrodes.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the University of Sharjah, Project No. 19020406129.

References

ET. Sayed, A.G. Olabi, N. Shehata et al.

Ain Shams Engineering Journal xxx (xxxx) xxx

References

Dr. Enas Taha Sayed. Dr. Enas is associate professor at Chemistry Department, College of Science, Sultan Qaboos University, Oman, with more than 800,000 USD. He is editor in International journal of thermofluids and journal of carbon resources and conversion.

Dr. Prof. Abdul-Chani Olabi. Prof Olabi is the Director of Sustainable Energy and Power Systems Research Centre at the University of Sharjah “UoS”. Previously, he was Head of Department, Director of research institute, and many other academic and industrial position. He has supervised postgraduate research students (38 PhD) to successful completion. He has patented 2 innovative projects on PEM Fuel Call. He is the Subject Editor of the Elsevier Energy Journal, EiC of the Encyclopedia of Smart Materials (Elsevier), Editor of the Reference Module of Materials Science and Engineering (Elsevier), EiC of Renewable Energy section of Energies and board member of few other journals. Professor Olabi published more than 350 manuscripts in ISI indexed journals.

Dr. Prof. Mohammad Ali Abdelkareem. Mohammad Abdelkareem got his PhD from Japan in 2008. Right now, he is professor in sustainable and renewable energy engineering department, university of Sharjah, UAE. He is working on the development of the different renewable energy resources and devices that can be used in wastewater treatment and water desalination. Moreover, He is working on the development of the electrodes for the different electrochemical energy conversion/storage devices, such as direct methanol fuel cells, direct urea fuel cells, microbial fuel cells, and supercapacitors. Professor Mohammad published more than 200 manuscripts in ISI indexed journals. He secured several research funds with more than 800,000 USD. He is editor in International journal of thermofluids and journal of carbon resources and conversion.