Validation of a density separation technique for the recovery of microplastic and its use on marine & freshwater sediments
Quinn, Brian; Murphy, Fionn; Ewins, Ciaran

Published in:
MICRO 2016: Fate and Impact of Microplastics in Marine Ecosystems

DOI:
10.1016/B978-0-12-812271-6.00008-9

Published: 01/12/2016

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
VALIDATION OF A DENSITY SEPARATION TECHNIQUE FOR THE RECOVERY OF MICROPLASTIC AND ITS USE ON MARINE & FRESHWATER SEDIMENTS.

MICRO2016, LANZAROTE

Brian Quinn, Fionn Murphy & Ciaran Ewins

Institute of Biomedical & Environmental Health Research (IBEHR), University of the West of Scotland, Paisley, Scotland.
Email: brian.quinn@uws.ac.uk
Density Separation Validation

- Claessens et al., (2013) protocol (3:1)
- Brine solutions (4) & water
- Sediment (200-400 µm)
- MP size classes (200-600 µm)
- Different plastic types
- N=9, individually & mixture

Plastics in validation test

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Source</th>
<th>Density (g/cm-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High density Polyethelene (HDPE)</td>
<td>Air waves base</td>
<td>0.941 g/cm³</td>
</tr>
<tr>
<td>High density Polyethelene (HDPE)</td>
<td>Milk carton</td>
<td>0.941 g/cm³</td>
</tr>
<tr>
<td>Low density Polyethelene (LDPE)</td>
<td>Air waves lid</td>
<td>0.915–0.925 g/cm³</td>
</tr>
<tr>
<td>Nylon</td>
<td>Thread</td>
<td>1.13-1.15g/cm3</td>
</tr>
<tr>
<td>Polyethelene (PE)</td>
<td>Supermarket bag</td>
<td>0.926–0.940 g/cm³</td>
</tr>
<tr>
<td>Polyethelene terephthalate (PET)</td>
<td>Lucozade bottle</td>
<td>1.38 g/cm³</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>Plastic container</td>
<td>0.855 -0.946g/cm3</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>Coffee lid</td>
<td>0.946 g/cm3</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>Plastic forks</td>
<td>0.946 g/cm3</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) Un Plasticised</td>
<td>Window frame</td>
<td>1.35-1.45 g/cm3.</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) Plasticised</td>
<td>Wire</td>
<td>1.35-1.45 g/cm3.</td>
</tr>
<tr>
<td>polyethylene (180µm)</td>
<td>sigma bottle</td>
<td>0.926–0.940 g/cm³</td>
</tr>
</tbody>
</table>

Densities of Saturated Brines Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Density (g/cm-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>1.0032</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.1708</td>
</tr>
<tr>
<td>NaBr</td>
<td>1.37</td>
</tr>
<tr>
<td>NaI</td>
<td>1.566</td>
</tr>
<tr>
<td>ZnBr2 (25%)</td>
<td>1.71</td>
</tr>
<tr>
<td>ZnBr2</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Validation results (n=9)

% MP Recovery

H2O NaCl NaBr NaI ZnBr2

PE (180um) PE PE (FW) PVC HDPE PET PS Nylon Mixed
Results: Validation Experiment

- H2O
- NaCl
- NaBr
- NaI
- ZnBr2

- % MP Recovery

- PE (180um)
- PE
- PE (FW)
- PVC
- HDPE
- PET
- PS
- Nylon

- Average Percentage
- Recovery (%)
Results: Environmental Samples

Freshwater MP / M3

Marine MP / M3

Map of Scotland showing locations…
Conclusion

• There are more efficient density solutions out there... ZnBr$_2$ is one of them.

• \uparrow MP extraction efficiency, \downarrow time

• Expensive to buy, but overall (including labour) cheaper
Other work...

• Scottish Microplastic Research Group - http://www.masts.ac.uk/research/masts-community-projects/scottish-microplastic-research-group/

• Fionn Murphy – Xlf (Thursday)

• Christopher Crawford – 1a