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Abstract

Level-of-service has been widely used to measure the operational efficiency of existing highway

systems categorically, based on certain ranges of traffic speeds. However, this existing method is

generic for investigating urban traffic characteristics. Hence, there is a crucial knowledge gap in

capturing the unique traffic speed conditions during a certain temporal duration, in a common

spatial area that includes different land use clusters. This study fills this gap by modeling the link

between traffic speeds and land use clusters during certain time periods, along with the given

level-of-service criteria. As a case study, this study adopted the central business district in Los

Angeles in the United States. A total of 1780 traffic sensor speed data on Interstate 10 East

adjacent to the central business district of Los Angeles was collected and clustered by the land

use designated by the zoning regulations of the city of Los Angeles. The proposed traffic time–

speed curve model that integrates different land uses in a large urban core was then developed

and validated statistically, using historical real-world traffic data. Finally, an illustrative example

was presented to demonstrate how the proposed model can be implemented to measure critical

time periods and corresponding speeds per land-use cluster, responding to the designated level-

of-service criteria. This study focused on making recommendations for government transporta-

tion agencies to employ an appropriate method that can estimate critical time periods affecting

the existing operational status of a highway segment in different land-use clusters within a

common spatial area, while promoting an effective application of a set of traffic sensor speed data.
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Introduction

Most urban areas include typical land use types such as businesses, residential areas, attrac-

tions, and remote areas, each having their own unique socioeconomic and demographic

characteristics. An essential component that interacts with these typical land use clusters is

road networks (Chaudhuri and Clarke, 2015). Spatially, road networks play a key role in

measuring, characterizing, and assessing the demand for transportation associated with

urban characteristics and each of the land-use types (Chaudhuri and Clarke, 2015;

Harding et al., 2014; Lowry and Balling, 2009). In large urban areas, central business

districts (CBDs) are defined as a key urban structure type (i.e. the urban core), which

commonly appear throughout large cities because of numerous economic activities

(Taubenb€ock et al., 2013). Nilsson and Smirnov (2016) found that economic activities in

CBDs are significantly affected by changes in the transportation system, such as the poten-

tial capacity expansion and the proximity to transportation infrastructure.
Given the strong interaction between land use clusters and road infrastructure, traffic

congestion negatively affects productivity and the costs to society, while wasting time and

energy (Rao and Rao, 2012). The impact of inconvenience appears in the form of travel time

increases, queue delays, reduction of highway capacity, potential increase of accident rates,

and a higher level of the traveling public’s dissatisfaction (Karim and Adeli, 2003; Rao and

Rao, 2012; Zhu et al., 2009). In general, severe traffic congestion is often shown in heavily

trafficked urban areas (Zhu et al., 2009), resulting in the average driver burning 67 hours and

32 extra gallons of fuel each year in the United States (Hasley, 2013). To overcome these

obstacles, it is believed that identifying and characterizing traffic congestion is the first step

to mitigating congestion, depending on the urban characteristics and the corresponding land

use clusters (Rao and Rao, 2012).

Level-of-service: A congestion measurement method

Congestion measurement methods should be clearly comprehensible, applicable to statistical

techniques, and replicable based on the results with a minimum amount of data

collected during certain time periods (Rao and Rao, 2012). In this regard, level-of-service

(LOS) is one of the most widely-used congestion measurement methods, specifically aimed

at measuring traffic congestion and assessing the operational efficiency of existing

road networks (Bhuyan and Nayak, 2013; Das and Pandit, 2016; Dowling et al., 2008;

Ghods and Saccomanno, 2016; Jolovic et al., 2016; Ramadan and Sisiopiku, 2016;

Rao and Rao, 2012).
As a qualitative measure, LOS allows non-technical audiences to capture the level of

traffic flows easily (Rao and Rao, 2012). LOS measures and describes the operational effec-

tiveness of a roadway segment with letter designations A through F (Alameda County

Transportation Commission, 2012; Bhuyan and Nayak, 2013). LOS A is the best performing

service, which indicates a free flow of traffic with little or no delay. On the other hand, LOS

F is the worst service, accompanied by traffic flows exceeding the capacity, thereby resulting

in long queues and delays (Transportation Research Board, 2010). Specifically, the Highway
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Capacity Manual (HCM) in the United States provides the list of six different ratings of

LOS (Transportation Research Board, 2010):

• A: Free flow operations at average travel speeds
• B: Reasonably unimpeded operations by maintaining LOS A
• C: Stable flow, but restricted to maneuver through lanes
• D: Approaching unstable flow with decreasing speeds as traffic volume slightly increases
• E: Unstable flow operations at capacity
• F: Arterial flow at extremely low speeds

The assessment of facility performance as described in the HCM is dependent on each

different type of roadway segment (e.g. mainline, weave, merge, diverge) (Jolovic et al.,

2016). The HCM procedures have constraints on achieving realistic and reliable data,

which are a key factor for evaluating the operating status of roadway segments.

Point of departure: Knowledge gaps

Employing quality data

To overcome the limitation of HCM procedures on a LOS analysis, FREEVAL was devel-

oped in Microsoft Excel with Visual Basic Applications, which is a supplementary compu-

tational engine associated with the HCM. FREEVAL is a deterministic equation-based

macroscopic and mesoscopic tool that provides segment-based densities to evaluate freeway

facilities (Jolovic et al., 2016; Transportation Research Board, 2010). Jolovic and Stevanovic

(2012) have pointed out that FREEVAL is incapable of capturing actual field data, such as

speed and density under oversaturated freeway conditions.
Compared to deterministic equation-based methods, most of the traffic simulators devel-

oped in recent decades adopt microscopic simulation models (Ben-Akiva et al., 1998;

Ermagun and Levinson, 2019; Hourdakis et al., 2003; Kamarianakis and Prastacos,

2005). Previous research efforts on coupling spatial areas and road networks have also

been made, based on simulation models (Anderson et al., 1996; Chaudhuri and Clarke,

2015; Ermagun and Levinson, 2019; Kanaroglou, 1999; Pendyala et al., 2012; Strauch

et al., 2005; Waddell, 2002). However, these simulation methods demonstrate a critical

limitation as they cannot capture global descriptions of the traffic flow-rate, density, and

velocity and are often restricted to synthetic or simplified data (Van Lint et al., 2002).
Therefore, many previous studies have not reflected real-world situations in the modeling

process, due to a lack of quality data. Data quality is defined based on various dimensions,

such as accuracy, objectivity, credibility, accessibility, amount of data, and consistency

(Strong et al., 1997; Wang et al., 1995). In the context of quality data in traffic domains,

for example, the Performance Measurement System (PeMS) is a very well-known archived

data user service operated by the California Department of Transportation (Caltrans, 2019).

PeMS converts freeway sensor data into intuitive tables and graphs that show historical and

real-time traffic measurements, by collecting traffic data every 30 seconds from over 15,000

individual loop detectors that are placed in California freeways (Bae et al., 2017; Chen et al.,

2001; Lv et al., 2015). Nevertheless, even if high quality data are available, as archived traffic

measurements read by a number of sensor devices at different locations within a common

spatial area are different from each other, engineers in government transportation agencies

and urban planners find it difficult to promote an effective application of a set of real-world
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historical traffic speed data to establish an effective strategy or policy that can reduce traffic

congestion.

Linking land use clusters to critical time–speed estimation

The significance of coupling between land use and transportation planning or modeling has

been highlighted by previous studies (Chaudhuri and Clarke, 2015; Handy, 2005; Hunt and

Simmonds, 1993; Lowry and Balling, 2009; Maat et al., 2005). In recent years, Chaudhuri

and Clarke (2015) provided a thorough review of previous studies on quantitative

approaches to the integration between land use and road networks on the macroscopic

level. In addition, Lowry and Balling (2009) presented a new approach to land use and

transportation for both city and region planning stages, called district land-use scenarios.

In turn, the scope of most previous studies is broad so that it is insufficient to capture the

unique characteristics of highway congestion in each different land use cluster within a

common spatial area.
When considering that most urban areas include highway segments within a particular

spatial area that is characterized by different land use clusters, such as commercial, indus-

trial, residential, and areas of attraction, existing methods are incapable of capturing the

unique characteristics of LOS in a particular land use cluster. Given the spatial variability,

there is very little known about appropriate methods that can estimate critical time periods

affecting the existing operational status of a highway segment in different land use clusters

within a common spatial area.

Research objectives and methods

As stated above, most existing studies have explored LOS of roadway systems through

simulation methods, which often do not reflect real-world situations within a certain spatial

area (e.g. urban downtown areas) accurately. In addition, the scope of analysis zones con-

ducted in previous studies is too broad to capture the unique characteristics of traffic

patterns in each different land use cluster within a common spatial area. This study fills

these gaps by modeling the link between traffic speeds and land use clusters during certain

time periods, in line with the given LOS criteria. Considering the impact of highway traffic

on large urban cores, the main objectives of this study are to develop and validate a traffic

time–speed curve model, specifically aiming at assessing critical time periods and the cor-

responding traffic speeds in different land use clusters within a common spatial area, as

depicted in Figure 1.
To this end, as a case study, this study adopted the CBD in Los Angeles (LA) in the

United States. The State of California (2001) classifies land use clusters into both general

locations and the intensity of housing, business, industry, open space, education, public

buildings and grounds, waste disposal facilities, and others. In line with the existing desig-

nation, the CBD in LA includes predominantly commercial and industrial land use ele-

ments. Accordingly, land use clusters considered in this study are drawn as location and

intensity-based classification. The objective of this study was achieved through the following

six-stage methodology:

1. A total of 1780 traffic speed measurements were collected from traffic sensors located on

Interstate 10 East (I-10 E) highway adjacent to the CBD of LA (hereafter “Downtown

LA”), which were extracted from the Caltrans PeMS (Caltrans, 2019).
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2. Along I-10 E, traffic sensors on the highway were clustered by mapping with the corre-

sponding land uses that are designated by zoning regulations of the City of LA, using

ArcGIS (Department of City Planning-City of Los Angeles, 2006).
3. A hypothesis test was conducted using the Kruskal–Wallis test and the Wilcoxon test

methods to scientifically examine whether there is a significant difference in average travel

speed measurements on the highway network near two different land use clusters in

Downtown LA (i.e. commercial and industrial land uses) and how they are different

from each other.
4. A time–speed model for the land use clusters was then developed through a fourth-order

(i.e. quartic) polynomial regression analysis.
5. The robustness of the developed model was validated by one of the most widely-used

cross-validation methods, the Predicted Residual Error Sum of Squares (PRESS) statistic

(Ott and Longnecker, 2010).
6. An illustrative example was then presented to demonstrate how the proposed model can

be implemented practically to measure LOS adjacent to the studied large urban core that

includes commercial and industrial land use clusters.

The following are assumptions and limitations of this study:

• It was assumed that traffic speed patterns during the studied time period are very similar

with historical traffic patterns over entire years.
• It was assumed that average travel speed data sets extracted from the traffic sensors

numerically represent the existing road facility information (e.g. number of lanes, entran-

ces/exits, interchanges/junctions) and geographical conditions (e.g. location, the proxim-

ity to land uses) that affect the operational efficiency of I-10 E near the studied land use

clusters.
• It was assumed that traffic patterns on I-10 West are symmetric with those on I-10 E.
• This study assumes that neither an incident nor an accident occurs.
• The scope of the highway network examined is limited to mainline in multi-lane unidi-

rectional highways, excluding ramps, intersections, and HOV lanes.

Figure 1. Typical spatial areas along with large urban corridors.
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• Traffic sensor data collected in this study are confined to average travel speed measure-

ments during typical weekdays (i.e. Monday to Friday), excluding speed data during

weekends and holidays.

Data collection and classification

As depicted in Figure 2(a), I-10 E adjacent to Downtown LA was selected as the traffic

analysis network to gather traffic sensor speed data that can be benchmarked with other

large urban cores. LA has long been one of the most trafficked metropolitan areas in the

United States (TRIP, 2014). More specifically, I-10 near Downtown LA ranks third on the

list of the most congested highways in the nation (Romero, 2015).
Along with the highway network, a total of 1780 traffic sensor measurements (i.e. average

travel speed) on I-10 E was randomly collected between 6:00 a.m. and 9:00p.m. during week-

days in the first quarter of the year 2016, using the Caltrans PeMS (see Figure 2(a)) (Caltrans,

2019). More specifically, traffic speed data sets were extracted from PeMS, over a five-minute

interval during the collection time period per day (i.e. Monday to Friday). Meanwhile, using

ArcGIS, the common spatial area (i.e. Downtown LA) was grouped by commercial and indus-

trial land uses that are designated by the zoning regulations of the City of LA, as seen in Figure

2(b) (Department of City Planning-City of Los Angeles, 2006). Subsequently, the averaged

traffic speed data sets were mapped with the corresponding land use clusters and then averaged

on a daily basis, considering different numbers of traffic sensor locations available on the

highway network (see Figure 2(a)). In turn, a total of 890 sensor measurements were used to

represent each land use cluster (i.e. 1780¼ 890� 2 land uses). Table 1 summarizes the average

travel speed data sets in the two different land uses on daily basis and during weekdays.

Initial data analysis: Average travel speed versus land use

In general, statistical analysis of the data in transportation problems violates the assumption

of the normality of the data (Spiegelman et al., 2011). A lack of normality in ANOVA

causes leads to significant inflation of the error sum of squares due to outliers. To overcome

this difficulty, the Kruskal–Wallis approach to ANOVA was conducted, which compares

Figure 2. Traffic analysis zone: Downtown LA along I-10 E.
PeMS: Performance Measurement System; I-10 E: Interstate 10 East; CBD: central business district; LA: Los
Angeles.
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the medians of two or more samples. As a nonparametric alternative, this distribution-free

test is robust to the existence of outliers in which the raw data are replaced with ranked data

(Ott and Longnecker, 2010; Spiegelman et al., 2011).
Since the distribution of traffic speed data proves to be non-normal (Figure 3(a)) and the

variances clustered by commercial and industrial land uses in Downtown LA are different as

shown in Figure 3(b), the Kruskal–Wallis approach is available to compare the clustering groups.
The following hypothesis is established to test the difference between two land use clusters:

• H0: There is no statistically significant difference in average traffic speeds in commercial

and industrial land uses within a common spatial area.

Table 1. Descriptive statistics of the average travel speed data sets.

Land use cluster

(sample size) Statistics

Average travel speed (mph) between 6 a.m. and

9 p.m. (five-minute interval)

Mon Tues Wed Thurs Fri

Weekdays

overall

Commercial

(890)

Mean 41.74 40.77 40.15 38.87 37.69 39.84

Median 46.52 46.15 46.23 44.09 40.91 45.64

Min. 19.04 16.54 15.51 16.78 16.75 17.37

Max. 55.65 55.96 54.76 53.68 53.83 53.99

Q1 (25%) 32.30 30.14 28.72 27.39 26.12 28.46

Q3 (75%) 50.03 49.67 49.63 49.15 47.42 48.69

Std. Dev. 10.451 11.402 11.796 11.772 10.840 11.066

Industrial

(890)

Mean 53.60 54.51 54.42 54.00 52.85 53.88

Median 55.12 55.39 55.83 55.80 54.25 55.49

Min. 38.27 40.76 39.23 37.57 40.65 39.99

Max. 64.04 64.46 63.78 64.04 61.69 63.15

Q1 (25%) 50.97 50.72 51.83 50.66 47.88 50.24

Q3 (75%) 58.28 58.72 58.82 58.90 57.13 58.19

Std. Dev. 6.285 5.743 6.206 6.429 5.897 6.025

Figure 3. Initial data investigation. (a) Violation of the normality assumption; (b) Comparison of average
speed data between commercial and industrial land uses.
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• Ha: There is a statistically significant difference in average traffic speed measurements in
different land uses within the common spatial area.

The test results confirmed that I-10 E average travel speed data samples come from a
different population by having a high chi-square value of 767.2085 and p-value much less
than .0001. To scientifically test the established hypothesis further, the Wilcoxon matched-
pairs signed ranks test was conducted to examine whether the result of one measure is
significantly different from the other through matched-pairs signed ranks. The following
hypothesis was established to test whether vehicle speeds under two different land use
clusters are different from each other, at the significance level (a) of 0.05:

• The industrial land use cluster in Downtown LA would result in higher speed during
weekdays, compared to the speed in the commercial land use cluster.

The test result as seen in Table 2 revealed that traffic congestion near the commercial use in
Downtown LA (j) is much heavier than the industrial use (i), with a p-value less than .0001.

Modeling the link between highway traffic speed and land use

Designing a quartic polynomial regression model

The validity of the regression model is determined based on certain assumptions of the
normality, homogeneity of variances, and homoscedasticity. The validation of these
assumptions is essential for a reliable interpretation of causal relationships among the
variables in the model (Jafarzadeh et al., 2013).

Given that this study uses non-normally distributed data for the analysis, there is a high
possibility of heteroscedasticity. The existence of heteroscedasticity is a major concern when
conducting a regression analysis because it can cause biased results. To tackle this issue, the
proposed time–speed model was transformed to a fourth-order (quartic) polynomial regres-
sion form after comparing the fitted lines of a number of different transformed models. In
addition, the dependent variable of speed was transformed to a squared form, to improve
the accuracy and reliability of the proposed statistical model. A categorical variable was
incorporated into the model in order to determine how traffic speed patterns for the two
land use clusters are statistically different from each other as outlined below:

Transformed Speed ¼ ðSpeedÞ2 ¼ b0 þ b1 Timeþ b2 Time2 þ b3 Time3 þ b4 Time4 þ b5 I1

(1)

where
Speed: Average traffic speed (mph)
Time: 24-hour time designation as continuous values (e.g. 1: 15 p.m.¼ 13.25)
I: Indicator, if I1¼ 1: Commercial land use
if I1¼ –1: Industrial land use

Table 2. Wilcoxon test results of nonparametric comparisons for each pair.

Parameter Level (i) Level (j)

Score mean

difference (i–j)

Std. error

difference z-value p-Value

Average speed Industrial Commercial 674.88 24.37 27.70 <.0001
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As shown in equation (1), the indicator of a categorical variable in the regression model was
numerically represented using an effect coding method that takes values of –1, 0, and 1 for the
categorical variables. The effective coding has a benefit that both the main effects and interaction
can be reasonably estimated, compared to other commonly used method of dummy coding. The
dummy coding focuses on showing the interaction of groups by taking 0 and 1 for the categorical
variables, not the main effect itself (Choi et al., 2015b; Cornell University, 2008).

In the application of a regression analysis, it is assumed that the standardized residuals
should be normally distributed as the null hypothesis. A normal quartile–quartile (Q–Q)
plot of the standardized residuals displays approximately normally distributed data, as
shown in Figure 4(a). In the proposed model, the mean and standard deviation of these
residuals were calculated to be .01 and .94, respectively. These values are almost the same as
those used to describe a standard normal distribution (i.e. mean: 0 and standard deviation:
1). To scientifically test the normality, Fisher’s exact test was performed by comparing the
mean standard deviation values obtained from the proposed model with those in the stan-
dard normal distribution. The two-sided test result shows that the standardized residuals
follow the normal distribution by adopting the null hypothesis.

Heteroscedasticity is generally detected by looking at the scatter plot of the standardized
residuals versus the predicted values of the dependent variable. As shown in Figure 4(b), the
residuals are randomly spread out without any systematic patterns, which suggest that there
is no significant evidence of heteroscedasticity in the proposed model.

Modeling time–speed curves by land use clusters

To produce a reliable prediction model by satisfying all regression assumptions, the outliers
over� 2.7 were detected and excluded from the initial examination. Spearman’s rho test was
conducted to examine whether the transformed speed variable is affected by temporal peri-
odicity. The test results confirmed that a predictor contributes to predicting the operational
speed data (q¼ –.477, p< .0001).

The proposed model is drawn as a centered polynomial model that fits the same curve by
reducing a chance to have a high correlation between a predictor (X) and its higher order
terms. The concept of centering is to subtract the mean value of X from all X values, i.e. the
centered X value is the distance of any X value from the mean of all X values (SAS Institute,
2016). For the proposed model development, the centering value of 13.31 was achieved as
the average time slot of the samples.

Figure 4. Regression assumption check after data transformation. (a) Normality check: standardized
residuals; (b) Heteroscadasticity check.
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Table 3 shows a summary result of a one-way ANOVA analysis, while Table 4 shows a
summary of the regression analysis. The F-ratio of 4157.118 is significant at the .0001 level,
which suggests the proposed regression model is adequate. An adjusted R-squared value of
.922 indicates a very strong reasonable fit between the operational speed and its prediction
attributes, which suggests that 92.2% of variability in the operational speed could be
explained by the selected independent variables.

With seven coefficients that are significant, the following centered polynomial regression
equation to predict the representative traffic patterns was generated as shown in equation (2)
and Figure 5

Speed2 ¼ 6336:92� 302:13 � Timeð Þ � 37:49 � Time� 13:31ð Þ2

þ5:98 � Time� 13:31ð Þ3 þ 1:16 � Time� 13:31ð Þ4 � 607:44 � I1 (2)
where

If I1¼ 1: Commercial land use
If I1¼ –1: Industrial land use

Two different curved lines for the land use clusters indicate the fitted lines produced by
equation (2), while several dots show the corresponding actual travel speed data points used
in this modeling process.

According to the results of the centered quartic polynomial regression model shown in
Figure 5, severe traffic congestion was investigated in the commercial use cluster
of Downtown LA, compared to the industrial use area along I-10 E. As an example, the
p.m. peak hour (5: 30 p.m.) was set to 17.5. Using the set value of time, the expected speed
can be calculated as follows (equations (3) and (4))

For the commercial land use cluster (I1¼ 1)

Table 3. Summary of ANOVA.

ANOVA Sum of squares DF Mean square F-ratio p-Value

Regression 1,460,557,395 5 292,111,479 4127.118 <.0001

Residual 122,730,035 1734 70,778,567

Total 1,583,287,430 1739

Table 4. Summary of quartic polynomial regression analysis.

Parameters Coefficient Std. error t-Value p-Value R2 Adj. R2

Constant 6336.92 51.28 123.57 <.0001 0.923 0.922

Time –302.13 3.76 –80.34 <.0001

(Time – 13.31)2 –37.49 1.39 –26.96 <.0001

(Time – 13.31)3 5.98 0.11 55.60 <.0001

(Time – 13.31)4 1.16 0.03 39.03 <.0001

Commercial –607.44 6.38 –95.22 <.0001

Industrial 607.44 6.38 95.22 <.0001
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Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6336:92� 302:13 � 17:5ð Þ � 37:49 � 17:5� 13:31ð Þ2
þ5:98 � 17:5� 13:31ð Þ3 þ 1:16 � 17:5� 13:31ð Þ4 � 607:44 � 1ð Þ

s

¼ 24:11mph ð� 24mphÞ at 5 : 30 p:m: during weekdays

(3)

For the industrial land use cluster (I1¼ –1)

Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6336:92� 302:13 � 17:5ð Þ � 37:49 � 17:5� 13:31ð Þ2
þ5:98 � 17:5� 13:31ð Þ3 þ 1:16 � 17:5� 13:31ð Þ4 � 607:44 � �1ð Þ

s

¼ 42:38mphð� 42mphÞ at 5 : 30 p:m: during weekdays

(4)

Validation of the robustness of model

An appropriate approach to validating the robustness of model is critical, especially when
developing a statistical model. A typical validation method tests the model with new data
sets that are not employed in the modeling process, but it is often limited by the ability to
acquire an independent data set (Choi et al., 2012, 2015a, 2015b). This difficulty has been
overcome by an alternative validation method that does not need additional new sets of
data, i.e. the PRESS statistic (Choi et al., 2012, 2015a, 2015b; Holiday et al., 1995; Ott and
Longnecker, 2010; Tarpey, 2000). The PRESS statistic was adopted in this study to test the
predictability and accuracy of the model developed here.

PRESS measures the prediction quality based on the comparison between each observed
response and the corresponding value based on the fitted model, as shown in equation (5)
(Choi et al., 2012, 2015a, 2015b)

Figure 5. Fitted lines of the developed model.
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PRESS ¼
Xn
i¼1

ðyi � ŷ�i Þ2 (5)

where yi is a prediction for the ith observation in the regression model, and ŷ�i is a prediction
of a new subset model for the ith observation, which is fitted with leaving out the ith

observation.
The PRESS statistic is then compared with the sum of squared error (SSE), measuring the

level of discrepancy between the sum of the squared differences in predicted and actual

values (Choi et al., 2012, 2015a, 2015b; Ott and Longnecker, 2010). If the value of the

PRESS statistic is closer to the SSE value, it statistically verifies that the proposed model

can predict new data with high certainty. The PRESS statistic cannot be smaller than the

value of SSE (Ott and Longnecker, 2010). On the other hand, if the PRESS statistic is much

larger than the SSE value, it indicates a validation issue in the proposed regression model

(Ott and Longnecker, 2010). The ratio of PRESS to SSE values for the proposed traffic

speed-time model was 1.002 (PRESS/SSE¼ 266.5527/266.0424), which indicates that

the proposed model is robust in predicting vehicle speeds during the given time period

(6:00 a.m. to 9:00 p.m.) during weekdays adjacent to Downtown LA, which consists of

commercial and industrial land uses.

Illustrative example: Practical applicability

Caltrans endeavors to sustain service levels at the transition between LOS C and LOS D.

Caltrans emphasizes that anything below LOS D can be regarded as unacceptable condi-

tions (Caltrans, 2002). Among LOS for roadways, Table 5 presents LOS for freeway sec-

tions based on the criteria of average travel speed (Transportation Research Board, 2010).
Based on the LOS rating system, an illustrative example demonstrates how the developed

model can be used to capture the LOS during critical time periods by the land use clusters.

More specifically, the developed model was applied to capture the time points of minimal

delays and significant delays by the land use clusters. As shown in Figure 6, the operational

status close to the industrial use area was an acceptable condition during weekdays.

However, near the commercial use area, there would be critical periods during weekdays

that significantly affect the service.
Using the proposed regression model, the critical time period in the commercial land use

type was detected. As the result, two time points of 13.65 and 19.57 were obtained from the

mathematical equation (equation (6))

Table 5. Level of service for freeway sections.

LOS Average travel speed (mph) Technical description

A �60 No delays

B �55 No delays

C �49 Minimal delays

D �41 Minimal delays

E �30 Significant delays

F <30 Considerable delays

Source: reproduced with permission from Transportation Research Board, 2010.
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ð40Þ2 ¼ 6336:92� 302:13 � Timeð Þ � 37:49 � Time� 13:31ð Þ2

þ 5:98 � Time� 13:31ð Þ3 þ 1:16 � Time� 13:31ð Þ4 � 607:44 � 1
(6)

These two values indicate that there would be severe traffic congestion between 1:39 p.m.
and 7:34 p.m. during weekdays in the commercial land use cluster along I-10 E, by showing
below LOS E.

Conclusions

LOS has been widely used to measure the operational efficiency of existing highway systems
categorically, based on certain ranges of traffic speeds. However, this existing method is too
broad to investigate urban traffic characteristics. A more effective and efficient method that
captures the unique characteristics of LOS during a certain temporal duration in a common
spatial area that includes different land uses is needed.

To fill this gap, this study attempted to model the link between traffic speeds and land
uses during certain time periods, along with the given LOS criteria. To this end, this study
developed and validated a traffic time–speed curve model that includes different land uses in
a large urban core. As a case study, this study adopted a CBD in LA in the United States.
A total of 1780 sensor readings on I-10 E adjacent to Downtown LA was collected during
weekdays (6:00 a.m. to 9:00 p.m.) of the first quarter of a calendar year. The collected data
were summarized using a signature-based approach in order to generate traffic flows. Along
with the I-10 E roadway network, spatial information was clustered by its land use (i.e.
commercial and industrial), which are designated by the zoning regulations of the city of
LA. Significant differences in speed in each land use type was investigated and scientifically
tested. The result showed that traffic congestion in the commercial land use cluster was
higher than in the industrial.

Based on the result, a fourth-order polynomial regression with a categorical variable was
conducted to generate a stochastic decision-support model that captures the unique char-
acteristic of spatiotemporal traffic patterns. To detect time intervals that are available to

Figure 6. Graphical illustration of LOS by the land use clusters.
LOS: level-of-service.
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predict the operational status of the I-10 E roadway network adjacent to Downtown LA

during the weekdays of the first quarter of a calendar year, the upper bound of LOS E

(40mph of average travel speed) was applied. The finding showed that there would be severe

traffic congestion between 1: 39 p.m. and 7: 34 p.m. in the commercial land use cluster along

I-10 E adjacent to Downtown LA, by showing below LOS E. In contrast, minimal delays

(LOS C) between 1:19 p.m. and 7:40 p.m. were shown in the industrial land use type in

Downtown LA. The robustness of the proposed quantitative model was validated by com-

paring the PRESS statistic with SSE values.
Although this study was temporally limited to the first quarter of a calendar year during

particular time intervals and spatially constrained by the CBD, other spatiotemporal traffic

patterns could be discovered by following the research method proposed in this study.

Specifically, the proposed research method would allow government transportation agencies

to predict the most representative traffic patterns that are applicable to any given roadway

network associated with particular land use clusters (e.g. residential, business, areas of

attraction, and remote areas) within a common spatial area. In summary, this study focused

on making recommendations for government transportation agencies to employ an appro-

priate method that can estimate critical time periods affecting the existing operational status

of a highway segment in different land use clusters within a common spatial area. In addi-

tion, the main findings of this study also help government transportation agencies promote

an effective application of a set of historical traffic sensor speed data, as a way for urban

planners to establish an effective strategy or policy that can reduce traffic congestion, com-

pared to other simulation-based methods.
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