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ABSTRACT 11 

Cough detection has recently been identified as of paramount importance to fully 12 

exploit the potential of telemedicine in respiratory conditions and release some of the 13 

economic burden of respiratory care in national health systems. Current audio-based cough 14 

detection systems are either uncomfortable or not suitable for continuous patient monitoring, 15 

since the audio processing methods implemented therein fail to cope with noisy environments 16 

such as those where the acquiring device is carried in the pocket (e.g. smartphone). Moment 17 

theory has been widely applied in a number of complex problems involving image 18 

processing, computer vision, and pattern recognition. Their invariance properties and noise 19 

robustness make them especially suitable as “signature” features enabling character 20 

recognition or texture analysis. A natural extension of moment theory to one-dimensional 21 

signals is the identification of meaningful patterns in audio signals. However, to the best of 22 

our knowledge only marginal attempts have been made in this direction. This paper applies 23 

moment theory to perform cough detection in noisy audio signals. Our proposal adopts the 24 

first steps used to extract Mel frequency cepstral coefficients (time-frequency decomposition 25 

and application of a filter bank defined in the Mel scale) while the innovation is introduced in 26 

the second step, where energy patterns defined for specific temporal frames and frequency 27 

bands are characterised using moment theory. Our results show the feasibility of using 28 

moment theory to solve such a problem in a variety of noise conditions, with sensitivity and 29 

specificity values around 90%, significantly outperforming popular state-of-the-art feature 30 

sets. 31 
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Audio event detection, cough segmentation, moment theory, k-Nearest Neighbours, 33 

Time-frequency analysis.  34 
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1 Introduction 35 

Cough is a symptom associated with over one hundred medical conditions like 36 

respiratory diseases (e.g., asthma, bronchiectasis, or chronic obstructive pulmonary disease), 37 

generic pathologies such as cold or allergies or even lifestyle (smokers) [1]. Respiratory 38 

conditions constitute a significant burden for national health systems and economies [2], [3], 39 

with clear potential to be released if objective continuous monitoring of symptoms such as 40 

cough was made possible. Consequently, cough detection has recently been identified as of 41 

paramount importance to fully exploit the potential of telemedicine in respiratory conditions 42 

and thus decrease their economic burden [4]. 43 

Audio cough events are non-stationary signals presenting a sparse spectrum that 44 

exhibits a high-energy peak around 400 Hz and a secondary peak between 1 and 1.5 kHz. 45 

Detecting and properly characterising them is hindered by a lack of a clear pitch structure [5]. 46 

Moreover, there exist other events produced by the human body such as throat clearing, 47 

gasping breath or laugh whose acoustic properties are very similar. Also, a continuous 48 

monitoring environment (e.g. when carrying a smartphone in the pocket) can prevent accurate 49 

detection due to the presence of noise with diverse spectral content.   50 

Audio event detection (AED) was originally posed as a binary classification problem to 51 

differentiate speech from non-speech events. Such systems are commonly known as voice 52 

activity detectors [6]. Later, the generalisation of other information sources such as 53 

audio/video streaming, musical repositories or online video-games [7], [8], [9] led to other 54 

applications involving non-speech signals: query-by-humming, recommender systems or 55 

automatic music transcription [10]. The signal processing and machine learning techniques 56 

applied within this new context are often referred to as machine hearing [11]. Moreover, the 57 

emergence of new devices – e.g. smartphones, tablets or wearables – with their increasing 58 

computational capabilities diversified the variety of applications requiring AED [6]. These 59 

new applications were initially focused on content-based audio classification and retrieval 60 

[10], [12]. However, nowadays there is an increasing number of applications such as medical 61 

telemonitoring [13], ambient sound recognition [14], or audio surveillance (e.g. monitoring of 62 

wildlife areas [15] or classification of aircraft noise [16]). 63 

Despite the fact that automatic detection and analysis of speech are still active research 64 

areas [17], their methods are not always directly applicable to other AED problems [6] due to 65 

two main reasons. First, speech or music repositories are in general larger than other 66 
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databases that are more difficult to record or whose production is less frequent [18]. This 67 

point often leads to suboptimal or unfeasible applications of speech/music-specific methods 68 

to these smaller-sized datasets. Second, the differences in acoustic (e.g., formant frequencies 69 

or pitch contour) and spectral (e.g. distribution or spread) properties among different audio 70 

signals play an important role. Many of these methods are specifically designed on the basis 71 

of speech properties [17]. Thus, their application to other types of audio events such as 72 

acoustic biomedical signals or environmental sounds does not always produce satisfactory 73 

results [6].  74 

A number of papers have addressed the problem of automatic cough detection from 75 

different perspectives. Commercial cough detectors achieve sensitivity values in the 80% 76 

range by employing features extracted not only from cough sounds but also from chest 77 

movement [19], [20]. Matos et al. employed a keyword-spotting approach based on a hidden 78 

Markov model. Their average detection rate was 82% [21]. Drugman used mutual 79 

information-based measures and feature synchronisation to perform feature selection and 80 

classification for cough segmentation. Sensitivity and specificity values above 90% were 81 

reported [22].  82 

Other authors have designed specific methods for cough segmentation. You et al. 83 

employed non-negative matrix factorisation, reaching sensitivity and specificity values 84 

around 85% [23]. They also proposed an ensemble multiple frequency subband features 85 

approach where recall values around 74% with an overall 82% performance were reported 86 

[24]. Finally, deep learning methods based on convolutional neural networks (CNN) and 87 

recurrent neural networks (RNN) have recently been used as well. Amoh and Odame 88 

achieved 83% sensitivity using this approach, although the CNN was superior (93%) in terms 89 

of specificity where the RNN only achieved 75% [25]. 90 

A number of approaches aiming at robust identification of audio events rely on 91 

interesting principles that could be adopted for cough detection. These approaches as such 92 

could only be applied to cough identification and not to cough detection, since they all work 93 

on previously segmented events of interest. Foggia et al. employed a bag-of-audio-word 94 

approach aimed at improving the discriminative power while the classification scheme is kept 95 

simple [26]. Dennis et al. developed spectrogram image features (SIF) for sound event 96 

classification. The spectrogram is normalised into greyscale, and its dynamic range is 97 

quantised into regions before partitioning it into blocks whose distribution statistics are 98 

extracted to build a feature set for classification. The main disadvantage of this approach is 99 
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the large dimension of the feature set (486) [27]. This drawback was partially solved by 100 

Sharan and Moir who improved the basic SIF approach for robust audio surveillance. They 101 

reduced the feature space dimension to 216 by computing the mean and standard deviation of 102 

the distribution statistics across rows and columns [28]. Other time-frequency representations 103 

have also been employed. Cochleagram image-based feature computation has found usage in 104 

speech recognition and audio separation applications [6]. The Wavelet transform, has also 105 

been used for speech and music discrimination since it provides better time and frequency 106 

localisation [6]. Finally, unsupervised classification approaches for environmental noise 107 

signal classification have recently been proposed [29].  108 

Although extensively applied in image processing and computer vision, moment-based 109 

methods are still marginal in one-dimensional signal processing. These methods hold a 110 

number of features that make them suitable for cough detection due to their 2D nature. As 111 

image processing methods, they can be applied to windows including a time-frequency 112 

representation of the signal (e.g., spectrogram, cochleagram, as in the robust methods 113 

described above) and exploit this higher dimensionality to achieve robust cough detection. 114 

Recently, Sun et al. employed features based on local Hu moments (HUm) for speech 115 

emotion recognition [30]. Our previous work [13] showed that a similar approach could be 116 

successfully used to perform robust detection of audio-cough events. To the best of our 117 

knowledge, only the extensions of HUm in [30] and [13] have been applied so far to audio 118 

signal processing. The two examples described above show the promising applicability of 119 

moment theory for cough detection in particular and more generally for audio processing.  120 

This paper proposes a novel methodology to extend moment theory to audio signal 121 

processing with a specific application to cough detection in noisy environments1. The 122 

individual pattern discrimination capability and robustness against noise of different moment 123 

families are studied and a discussion on the hyper parameter settings and design decisions in 124 

the methodology is presented. Our results show that using audio features based on moment 125 

theory significantly outperforms popular state-of-the-art feature sets such as Mel frequency 126 

cepstral coefficients (MFCC) [6] and linear predictive cepstral coefficients (LPCC) [30], 127 

especially in low Signal to Noise Ratio (SNR) scenarios. We also show that our method 128 

overcomes more noise-robust feature sets such as spectral subband centroid histograms 129 

(SSCH) [31] and power normalized cepstral coefficients (PNCC) [17]. It is worth 130 

                                                 
1 We will employ the broad term “noisy” to refer to conditions in which unwanted signals overlap with 

the audio event of interest, regardless of their random or deterministic nature. 
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highlighting at this point that in our context, cough detection is understood as a continuous 131 

process carried out while the signal is recorded in a soft real-time manner. We do not hold the 132 

assumption that the events are pre-segmented in different classes for further automatic 133 

classification as Audio Event Identification methods require. 134 

The paper is structured as follows: Section 2 introduces the proposed methodology, 135 

including a description of the taxonomy of the different moment families selected for the 136 

study. Section 3 presents the experimental setup, including the design of the employed cough 137 

database, and the performance measurements used to evaluate the proposal. The experimental 138 

results are presented in Section 4 and discussed in Section 5. Both sections validate the 139 

proposal by justifying the adopted methodology against previous approaches and studying its 140 

sensitivity with respect to different parameter configurations and design choices. Section 6 141 

finalises the paper with some conclusions and future directions. 142 

2 Proposed Methodology 143 

2.1 Extension of moment theory to audio event detection 144 

Many audio processing features are based on the spectral energy distribution of the 145 

acquired signals. For non-stationary signals, some type of Short Time Fourier Transform 146 

(STFT) computation provides a time-frequency decomposition to account for this spectral 147 

distribution along time. To obtain such representation, a filter bank is built to characterise the 148 

spectrum in several frequency bands. As an example, MFCC, one of the most widely used 149 

feature sets, employs the Mel frequency scale to set the limits of each filter in the filter bank. 150 

Once the filter bank is applied, the logarithm is computed for all energy values to obtain a 151 

representation close to the response of the human cochlea. This is the starting point of the 152 

proposed methodology, presented in the following paragraphs. 153 

In order to build a time-frequency distribution, the one-sided normalised power spectral 154 

density (PSDk[f], k=1,…, K) is first estimated for each window as the Fourier transform of the 155 

autocorrelation function according to the Wiener-Khinchin-Einstein theorem [32]. Secondly, 156 

the logarithm of the energies is computed for every window in a series of bands defined by a 157 

filter bank in the Mel scale: 158 
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where m denotes each filter within the filter bank, and fmin and fmax are the minimum and 160 

maximum frequencies considered in the analysis. The filter bank is defined as: 161 
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C(m) 1 ≤ m ≤ M are the central discrete frequencies for each filter in the filter bank, 163 

uniformly spaced between fmin and fmax in the Mel scale. Conversion from linear frequency 164 

scale to the Mel is performed as: 165 

    7001log2595 10 HzfMelf            (3) 166 

Consequently, after performing the first step for all the windows, a K × M matrix, E, is 167 

obtained, with K the number of windows and M the total number of filters defined in the filter 168 

bank. Fig. 1 illustrates how E is obtained. 169 

For short windows in the STFT decomposition, several adjacent windows may belong 170 

to the same audio event. Similarly, the energy in wc adjacent filters can be joined together 171 

with wr consecutive windows resulting in (wr × wc) sub-matrices within the energy matrix E. 172 

These sub-matrices, which hold energy patterns of a particular temporal frame and for a 173 

given frequency band can, therefore, be characterised by calculating their moments. The 174 

rationale of using moments to infer spectral signatures from energy patterns in the 175 

spectrogram resides in their ability to characterise spatial patterns in images. As stated in the 176 

introduction, moments are image features widely used for different tasks – for instance, digit 177 

reconstruction [33] or digit recognition [34], [35]. Digits are small images (or small parts of a 178 

larger image). Moments are able to identify spatial patterns so that different digits can be 179 

recognised. Therefore, moment theory constitutes a good candidate to extract meaningful 180 

features form spectral energy patterns in the time-frequency domain.  181 

From the energy matrix E, the computation of the final feature space is carried out as 182 

follows: Energy patterns with (wr × wc) size are first built by dividing E into blocks Bkj. For 183 

the k-th window, these blocks are constructed as: 184 
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 185 

  1,,0  cwMj               (4) 186 

In Equation (4), x and y respectively refer to the indexing variables in the horizontal and 187 

vertical axes, respectively. X and Y are the number of elements in the horizontal and vertical 188 

axes.  189 

The blocks for the first and last windows are padded with zeros on the top or bottom, 190 

respectively, up to the (wr × wc) size where no more data from the E matrix are available. 191 

This padding has a negligible effect on the calculations since the method is thought to 192 

perform audio-cough detection in a soft real-time manner, i.e., long audio recordings are 193 

processed using overlapping windows. The windows requiring padding encompass a 194 

maximum time period of hundreds of milliseconds, so padding does not have a significant 195 

impact on performance.  At the end of block construction step, each window is represented 196 

by D energy patterns: 197 

              (5) 198 

 The selected moments described in the next sections are calculated for each of the 199 

energy patterns Bkj. After computing these moments for all windows, a D-dimensional feature 200 

vector is obtained for each of the K windows. The magnitude is computed for complex 201 

moments. The process of building energy patterns and the generation of the final feature 202 

space is summarised in Fig. 2 for the sake of clarity. The steps shown in Fig. 2 constitute the 203 

main contributions of the proposed work. 204 

cwMD 
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 205 

Fig. 1 Pipeline of the first step of our proposal. This processing follows the same approach as other audio 206 
feature calculation such as MFCC. Nend refers to the number of points of the one-sided version of the 207 
STFT. 208 

 209 

Fig. 2 Pipeline of the second step of our proposal. After building energy patterns for every window (an 210 
example is depicted for the third window and a (2 × 2) block size) moments are used to characterise them, 211 
generating the final feature space. 212 

Fig. 2 also shows an interesting property of the proposed method. The dimension of the 213 

feature space is determined by the number of filters and the width of the energy patterns in 214 

the frequency axis (see equation (5)). 215 

These two parameters (M and wc) can be adjusted to set the dimension of the feature 216 

space. If large dimensions do not constitute a problem, the number of filters can be increased, 217 
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or wc can be reduced. However, both choices have their counterparts. Regarding the first, the 218 

filters are overlapped, since their limits have been defined in the Mel scale. A high number of 219 

filters may cause the information redundancy due to overlapping to spoil the benefit of a 220 

more fine-grained spectral characterisation. As for the second option, the user should take 221 

into account the feasibility of defining moment polynomials for small block sizes (see 222 

Section 3.2). In general, for low order polynomials, this does not constitute a problem, as they 223 

also have few zero-crossings. On the other hand, if the number of zero-crossings is higher 224 

than (wc - 1), the definition of the polynomial in that axis is not feasible (see Section 2.3). 225 

Considering the size of the block in the time axis, wr, the same considerations are valid 226 

for the lower limit. As for the upper limit, the following applies: For windows located in the 227 

middle of an event, it is highly likely that adjacent windows also belong to the same event. 228 

Nevertheless, for those closer to the boundary between two events, some of them may belong 229 

to a different event. The larger the value of wr, the higher the number of windows that may 230 

belong to a different event when building the blocks in the boundary. 231 

2.2 Selected moment families 232 

Complex moments are the most generic moment family [36], encompassing the rest of 233 

families, namely: geometric, rotational and orthogonal moments [37]. The basis of geometric 234 

moments is the theory of algebraic invariants [38]. Their main advantages are that they are 235 

computationally simple and they can be physically interpreted at lower orders. On the other 236 

hand, they suffer from a high degree of information redundancy, since the employed basis for 237 

projection is not orthogonal, and the higher the order is, the more noise-sensitive they are. 238 

Additionally, there is a large variation in their dynamic range of values [37]. As such, 239 

geometric moments do not have any invariance property, although using them together with 240 

central moments, Hu achieved the definition of three moments which are invariant to 241 

rotation, scaling, and translation, the so-called HUm [39]. Hu’s work could be considered the 242 

pioneering work in moment theory. To overcome the shortcomings of geometric moments, 243 

Teague proposed the use of orthogonal moments [40], i.e. their kernels are orthogonal 244 

polynomials. Their orthogonality allows for better image representation and reconstruction – 245 

derived from their lower degree of information redundancy – with the added value of high 246 

noise robustness [37].  247 
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Orthogonal polynomials can be defined using continuous or discrete functions. The 248 

major disadvantages of continuous moments compared to discrete ones are that they require a 249 

transformation of the coordinate space as well as a suitable transformation of the involved 250 

integral calculations, which lead to discretisation errors. Besides, discretisation errors 251 

accumulate as the moment order increases, and this limits the accuracy of the computations. 252 

Finally, similar to geometric moments, they present a considerable variation in their dynamic 253 

range of values. Some examples of continuous orthogonal moments are Lm [40] or FMm 254 

[35]. Among the discrete group, Tm [41], Km [42] or dHm [43] are some of the most 255 

representative examples. 256 

Together with orthogonality and type of variable (continuous or discrete), additional 257 

properties need to be considered for some moment families. For instance, FMm are defined in 258 

polar coordinates whereas Lm use Cartesian coordinates. The remaining orthogonal moments 259 

(all discrete) also use Cartesian coordinates. However, Km and dHm have additional 260 

properties in comparison to Tm, the first discrete orthogonal moment proposed by Teague 261 

[40]. Km can extract local features from any region of interest of an image. In other words, 262 

the Krawtchouk polynomials (Kp) employed in their calculation can be located in a particular 263 

position to emphasise the characterisation of that area. We have referred to this property as 264 

“locality”. The parameters that control locality are px and py [42] (see next section).  265 

In the case of dHm, locality is determined by two parameters, namely a and c [43] (see 266 

next section). Likewise, dHm have an extra property compared to Tm and Km: they are 267 

defined in a non-uniform lattice. This means that Tm and Km are directly defined on the 268 

image grid but, for dHm, an intermediate step must be introduced to get the non-uniform 269 

lattice, x(s) = s·(s + 1). The main properties of each selected moment are summarised in 270 

Table 1. 271 

We have selected HUm in this work for two reasons: (a) they were the first proposal in 272 

the moment theory, so they became a de facto standard against which to compare the 273 

performance of new proposals; (b) to the best of our knowledge, no other type of moments 274 

has been used for both image [37], and audio signal processing [13].  275 

Regarding continuous moments, we selected FMm and Lm since they are defined in 276 

different coordinate systems. Comparing both of them will provide insight on which 277 

coordinate system is more suitable when using moments for audio processing. By comparing 278 
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these continuous moments with discrete ones, we can check whether the disadvantages of the 279 

former when they are used for image processing are also present in this new context. 280 

The choice of discrete orthogonal moments (Tm, Km, dHm) was based on the 281 

additional properties that these moments offer. We included Tm as the most basic example of 282 

this family while Km and dHm will be used to analyse the contribution of the properties of 283 

locality and a non-uniform lattice, respectively. Using this set of six moments we expect to 284 

explore the behaviour of some of the essential moment properties in our attempt to extend 285 

their use for audio processing. 286 

Moment Type of variable Orthogonality Coordinate system Locality Type of lattice 

HUm Continuous No Cartesian No Uniform 

FMm Continuous Yes Polar No Uniform 

Lm Continuous Yes Cartesian No Uniform 

Tm Discrete Yes Cartesian No Uniform 

Km Discrete Yes Cartesian Yes Uniform 

dHm Discrete Yes Cartesian Yes Non Uniform 

Table 1 Properties of the selected moments 287 

The computation of the selected moments using the X × Y energy patterns Bkj(x,y) as 288 

input, is described in the following sub-sections.  289 

1) Hu moments (HUm) 290 

Hu defined three invariant moments as [39]: 291 
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where p, q, are the raw moments’ order in their respective dimension, y p,q( )  and m p,q( )are 299 

the non-central and central moments respectively calculated over the energy blocks, and 300 

h p,q( )is the normalised central moment. In equation (10),    0,00,1 x  and 301 

   0,01,0 y  are normalised first order non-central moments. Equations (6-8) are used to 302 

obtain the invariant HUm from Equations (9-11). We refer to [39] for a more detailed 303 

description of these parameters.  304 

2) Fourier-Mellin moments (FMm) 305 

The FMm are defined in the polar coordinate system (r, θ) with 0 ≤ r ≤ 1, so the first 306 

step is to map the pixel grid into polar coordinates. Once the (r, θ) values for each pixel are 307 

known, the Fourier-Mellin polynomials (FMp) are defined as follows [35]:  308 
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The FMm of the image can be expressed in axial coordinates (x, y) as follows: 310 
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In equations (12) and (13), p is the order of the FMp and the FMm, with p ≥ 0, and q is 312 

the repetition, with q = 0, ±1, ±2, …. 313 

3) Legendre moments (Lm) 314 

The set of Legendre polynomials (Lp) forms a complete orthogonal basis in the interval 315 

[-1, 1]. The X × Y pixel grid must be normalised to -1, 1é
ë

ù
û´ -1, 1é

ë
ù
û
. The discrete 316 

approximation of Lm is computed as [44]: 317 
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In equation (14),     YXqpA  1212  and p and q are the order of the 319 

polynomials defined in the x and y axes, respectively. The final order of the Lm is (p + q). 320 

Lp(p,xn) can be recursively computed according to equations (15), (16) and (17): 321 

  1,0 nxLp              (15) 322 

  nn xxLp ,1              (16) 323 
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Equations (15)-(17) apply similarly for  nyqLp , . 325 

4) Tchebichef moments (Tm) 326 

The (p + q)-order Tm are computed as follows [41]: 327 
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A recursive formula to compute the Tchebichef polynomials (Tp) is provided in 329 

equations (19), (20) and (21) [45]: 330 

  1,0 xTp              (19) 331 
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Equations (19)-(21) apply similarly to  yqTp , .  334 

5) Krawtchouk moments (Km) 335 

The (p + q)-order Km expressed in terms of Krawtchouk polynomials (Kp) are defined 336 

as [42]: 337 
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A recursive algorithm to compute the Kp is provided in [45]. In this work, the value of 339 

px and py is 0.4. 340 

6) Dual Hahn moments (dHm) 341 

Finally, the (p + q)-order dHm based on dual Hahn polynomials (dHp) are computed as 342 

follows [43]: 343 
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where a, b and c are inner parameters. In the original work [43], the authors provide pseudo-345 

code to compute dHp that takes advantage of the recursive properties of these polynomials, 346 

both in terms of the order (p or q) and argument (s or t). In the present study, a = c = 0 and b 347 

= (a + X) or b = (a + Y), respectively. 348 

3 Experimental set up 349 

3.1 Signal database 350 

In order to assess the performance of our proposal in a variety of noisy conditions, we 351 

designed an audio signal database including a wide range of real foreground event sounds 352 

that were artificially contaminated by overlapping sounds from different environments. The 353 

following paragraphs describe the process we carried out to create the database: 354 

1) The raw foreground events and background sounds were collected separately. We used 355 

both publicly-available audio signal databases [46] and signals recorded by ourselves. All 356 

the acquired signals were in wav format, at 44.1 kHz of sampling frequency and using 16 357 

bits per sample. A Samsung S6 Edge smartphone was used to acquire the recordings. 358 

Some examples of recorded signals are speech, laugh or throat clearing. The audio-signal 359 

databases [46] provided the noisy environmental sounds that were used to contaminate 360 

the foreground events. The duration of the signals changed between few seconds and 361 

several minutes.  362 

2) Due to the diversity of sources from the raw sounds, all the signals were normalised to 363 

have the same average power.  364 

3) After that, we combined the audio events with the background sounds using three 365 

representative SNR values for high, moderate and low noise respectively: -6, 3 and 15 366 

dB. To do so, we firstly selected the foreground events and the background sounds that 367 

would compose each final signal. The foreground events were collated one after the 368 

others in a larger signal. Between each foreground event, zero samples with random 369 

duration between 0.25 and 1 s were inserted. These gaps were included since two 370 

foreground events of different nature are very unlikely to occur one immediately after the 371 

other. Next, we calculated the gain factor, G, to be applied to the background sounds to 372 

achieve the desired SNR as in equation (24). Finally, both foreground events and the 373 
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background sounds were added. Fig. 3 shows the three SNR versions for one of the 374 

synthesised signals.  375 

  10
10 10/1log10

dBSNR

dB GGSNR


         (24) 376 

As far as possible, we tried to define each signal with the greatest realism. For instance, 377 

one of the samples replicated a situation in which a jogger is practising in a park. The 378 

background sounds include her steps, wind, etc. As for the foreground events, they come up 379 

in the following order: normal breathing, sounds of breathless breathing, a cough episode and 380 

finally a throat clearing event. Neither any foreground event nor background sounds was used 381 

more than once in the synthesis. Background sounds cover both indoor (air conditioning, an 382 

office, the subway, a supermarket, toilets, a crowded restaurant, the indoor of an airport, a 383 

classroom during a lecture, a train station waiting area, a buffet restaurant, a casino, a court 384 

house, a post office, a museum, the corridor of a hospital, etc.) and outdoor (breeze, strong 385 

wind, rain under an umbrella, a crowded street, a park with children playing, a quiet 386 

residential area, a street with traffic, an open-air market, etc.) environments. Among the non-387 

cough foreground events, the database includes throat clearing, sniffing, sneezing, burping, 388 

breathing, breathless breathing, laughs (male and female), speech (male and female), blowing 389 

nose, snoring or swallowing. 390 

 391 

Fig. 3 Representation of one of the audio signals in the database: (a) -6 dB, (b) 3 dB and (c) 15 dB 392 

3.2 Detection of audio-cough events 393 

The aim of the system is to discriminate between audio-cough events and non-cough 394 

events regardless the superimposed noisy background sounds. This is posed as a two-class 395 
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pattern classification problem, where cough is the positive class any non-cough sound 396 

belongs to the negative one. 397 

We used the following values for the block size (wr × wc): (4 × 4), (4 × 8), (8 × 4) and 398 

(8 × 8). This allows the study of the most meaningful configuration of the blocks – i.e. 399 

symmetric in both axis with two different values, and non-simmetric with larger time or 400 

frequency axis. We have selected these block sizes since they encompass a timeframe of 125 401 

ms (wr = 4) and 225 ms (wr = 8), respectively. Considering the average duration of an audio-402 

cough event (approximately 270 ms), longer temporal gaps would increase the probability 403 

that the system misclassifies an isolated cough event. Shorter ones would not sufficiently 404 

represent the signal energy on the time scale. 405 

The final feature dimension was set to 13 for two reasons: (a) it is a manageable 406 

dimension common in many machine hearing problems [13], [17]; (b) according to equation 407 

(5), the number of filters is the free parameter of our analysis; For values of wc = 4 or wc = 8, 408 

the number of filters is M = 52 and M = 104, respectively.  409 

We only use the first three moment orders (0, 1 and 2 or 1, 2 and 3 depending on the 410 

moment) on the following basis: 411 

1) To limit the initial dimension of the feature space (see Table 2).  412 

2) In image processing, lower orders are more robust against noise than higher order ones 413 

[47]. This  reason is based on the fact that moments are transparent to data semantics, so 414 

there is no difference between a pixel contaminated with additive noise and frequency bin 415 

which represents the spectrum of a foreground event plus noisy background sounds (the 416 

Fourier transform is a linear operator). Therefore, we hold the hypothesis that this 417 

property will be transferred to audio processing using the proposed approach.  418 

As shown in Table 2, the concatenation of the first three orders results in different final 419 

dimensions, since every moment includes different number of combinations of its inner 420 

parameters within each order. To make a fair comparison of the moment families, the same 421 

final dimension should be used for all the feature sets. To do so, we employed Relieff, a 422 

widely used feature selection algorithm for binary classification [48]. The frequency band 423 

between 0 and 2000 Hz has proved enough to detect audio-cough events [13], [49] so we 424 

downsampled the database using a factor of 5, resulting in a sampling frequency of 8820 Hz. 425 

As for the remaining parameters for feature computation, the window length was 50 ms with 426 

a 25 ms shift. Finally, we employed a Kaiser window with β = 3.5 for PSD computation.  427 
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The final classification relies on a k-Nearest Neighbours (k-NN), a widely used 428 

classifier in audio signal processing [50]. The 13 selected features for each window constitute 429 

the input patterns to the k-NN classifier. 430 

The classification is based on a train-validation-test partition of the feature space. 60% 431 

of the observations were used for training, 10% for validation and 30% for testing. We 432 

evaluated all the combinations among the following k-NN parameter values: k={1, 3, 5}; 433 

standardised Euclidean distance, cosine distance and correlation distance. All the analysed 434 

combinations used the inverse of the distance as the weighting function, and the distances 435 

were exhaustively computed (i.e., when a new observation is to be classified the complete 436 

training space is searched to find the k nearest neighbours). We trained different versions of 437 

the k-NN classifier based on the parameter values mentioned above. Then, we evaluated their 438 

performance using the validation group. First, we selected those configurations with the 439 

highest sensitivity and, among them, the one with the highest specificity. All the moment 440 

families reported the same best configuration: k was set to 3 (we used this value also for 441 

Relieff algorithm), and the standardised Euclidean distance was selected.  442 

It must be pointed out that the same partition was applied to all moments. This way, the 443 

possible differences in performance are due to the moment family and not to the feature 444 

selection or classification process. Moreover, the percentage (18.57%) of positive class 445 

observations (i.e., the percentage of windows which belong to cough events) was maintained 446 

in the three partition groups, and we used it to create a cost matrix for the 3-NN classifier. 447 

This matrix serves as a cost-sensitive parameter to deal with this unbalance in the 448 

classification step (see Fig. 4): 449 


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01857.0/1

10
            (25) 450 

The cost matrix in equation (25) gives higher priority to false negatives as the worst 451 

case scenario for misclassification, since a window with cough events would be missed. Fig. 452 

4 shows the pipeline of the designed system for robust detection of audio-cough events. 453 

Moment p q Order Dimension 
Final 

Dimension 

HUm 

-- -- 1 13 

39 -- -- 2 13 

-- -- 3 13 

FMm 

0 0 0 13 

39 1 0 1 13 

2 0 2 13 
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Lm, Tm, 

Km and  

dHm 

0 0 0 13 

78 

1 0 
1 

13 

0 1 13 

1 1 

2 

13 

2 0 13 

0 2 13 

Table 2 Orders and dimensions of the selected moments 454 

3.3 Figures of merit 455 

We use sensitivity (SEN) and specificity (SPE) as basic performance measures: 456 

 FNTPTPSEN               (26)  457 

 FPTNTNSPE               (27) 458 

where TP, TN, FP and FN are the number of true positives, true negatives, false positives and 459 

false negatives, respectively.  460 

We have also defined a specific measure accounting for the robustness of the system 461 

against noise (Noise Robustness, NR). The NR value is derived from the accuracy (462 

   FNFPTNTPTNTPACC  ) using the absolute difference of the accuracies at -463 

6 and 15 dB: 464 

   dBACCdBACCNR 615             (28) 465 

Equation (28) provides a measure of the sensitivity of a specific moment with respect to 466 

SNR. A small NR means a high capability of extracting pattern information regardless the 467 

ambient noise. The NR measure must be carefully understood, since two low ACC values 468 

close to each other would result in a better NR result than two higher ACC values with a 469 

greater difference. To avoid this misunderstanding, the NR results must always be considered 470 

together with an overall Pattern Recognition Capability (PRC) measure. The PRC is derived 471 

from the area under the receiver operator characteristic curve (AUC). It is defined as the 472 

grand-averaged AUC across SNR and block sizes: 473 

PRC =
1

3
× PRCSNRi

=
1

3

1

4i=1

3

å AUC SNR{i}, Block{ j}[ ]
j=1

4

å
i=1

3

å       (29) 474 

}15,3,6{SNR  dB and         88,48,84,44 Block .  475 
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 476 

Fig. 4 System pipeline for the detection of audio-cough events 477 

 478 

4 Results 479 

4.1 Primary results 480 

Fig. 5 summarises SEN and SPE results for the studied moments. The best SPE is 481 

achieved using Tm, with block size (8 × 8) and SNR = 15 dB. The best SEN is offered by the 482 

same moment and block size for SNR = -6 dB. The lowest SEN is achieved by FMm, when 483 

the block size is (4 × 8) and at SNR = -6 dB. As for the lowest SPE, it is also obtained with 484 

FMm at SNR = -6 dB and a (4 × 4) block size. 485 

The average ACC across all SNR versions (see Table 3) shows that performance is 486 

better for wr = 8 for wr = 4, for all the analysed moments. Moreover, Tm offers the highest 487 

PRC value whereas the best NR is obtained for dHm when the block size is (8 × 4). 488 
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 489 

Fig. 5 SEN (%) and SPE (%) results for every block size, moment family and SNR when the feature space 490 
dimension is 13: (a) (4 x 4), (b) (4 x 8), (c) (8 x 4), (d) (8 x 8). 491 

 
NR 

4x4 

NR 

4x8 

NR 

8x4 

NR 

8x8 

ACC  

4x4 

ACC  

4x8 

ACC  

8x4 

ACC  

8x8 

AUC  

-6 dB 

AUC  

3 dB 

AUC  

15 dB 
PRC 

FMm 6.02 5.89 1.13 0.98 76.49 76.53 84.31 84.51 79.03 79.40 81.82 80.08 

Lm 6.63 6.52 1.34 2.22 82.00 82.73 92.38 92.64 87.42 89.37 90.47 89.08 

HUm 6.04 8.94 1.26 0.55 80.78 82.93 85.80 88.32 83.01 85.09 85.93 84.67 

Tm 7.34 7.96 2.90 3.44 84.50 84.84 92.55 92.36 88.37 90.76 92.09 90.41 

Km 2.75 1.11 0.87 2.14 84.21 82.05 90.88 89.99 88.30 89.50 87.76 88.52  

dHm 5.17 0.46 0.06 1.33 85.71 85.28 90.15 89.74 89.03 89.66 88.73 89.31 

Table 3. NR (%), average ACC (%) per block size, average AUC (%) per SNR, and PRC (%) results for 492 
feature space dimension 13. Best NR and PRC results are highlighted in boldface. 493 

 494 

4.2 Impact of feature space dimension 495 

The impact of wc cannot be assessed from the preceding analysis. The number of filters 496 

duplicates when wc moves from 4 to 8. However, the frequency range is kept, so filters are 497 

narrower. The consequence is that each energy pattern covers approximately the same 498 

frequencies regardless wc, the only difference resides in the granularity of the energy 499 

sampling. Results in Table 3 confirm this behaviour:  When comparing (4 × 4) vs (4 × 8) and 500 
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(8 × 4) vs (8 × 8) results, it can be seen that the improvement when changing wc from 4 to 8 501 

is not remarkable. 502 

Therefore, a second trial of experiments was performed where the frequencies 503 

associated to each Bkj block were changed. M = 56 filters were used with wc = 8, thus making 504 

the final dimension for each moment order equal to 7. After that, 7 features, instead of 13, are 505 

selected by the Relieff algorithm to build the new feature space. We only used wc = 8 with the 506 

above configuration since it provides a coarser-grained spectral characterisation but relatively 507 

similar to (4 × 4) block size with M = 52, which is the basic configuration of the proposal. 508 

This allows: (1) to study how equation (5) affects the performance of our proposal; and 509 

equation (2) to assess whether the superiority of choosing wr = 8 is also observed. These 510 

results are presented in Fig. 6. 511 

By comparing Fig. 5 and Fig. 6, a performance reduction can be observed for all 512 

moments and both block sizes. PRC results in Table 4 confirm this behaviour. For example, 513 

Tm perform best, but the obtained PRC has been lowered by 6.26%. Similarly, generally 514 

speaking, PRC values have decreased for all moments. Besides, nine out of the twelve 515 

combinations exhibit worse NR. Consequently, both PRC and NR are negatively affected 516 

when the feature space dimension is reduced. Moreover, the average ACC across SNR 517 

versions (see Table 4) shows that results for (8 × 8) block sizes are better than those obtained 518 

for (4 × 8). This behaviour was also observed in the primary results.  519 

 520 

Fig. 6 SEN (%) and SPE (%) results for every block size, moment family and SNR when the feature space 521 
dimension is 7: (a) (4 x 8) and (b) (8 x 8). 522 

 523 

 
NR 

4x8 

NR 

8x8 

ACC  

4x8 

ACC  

8x8 

AUC 

 -6 dB 

AUC 

3 dB 

AUC  

15 dB 
PRC 

FMm 7.99 5.31 70.00 74.80 68.92 69.83 74.56 71.10  
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Lm 4.16 3.73 76.32 87.26 80.79 82.49 83.86 82.37  

HUm 5.04 4.57 73.58 77.77 74.78 72.20 78.72 75.23  

Tm 7.81 3.95 78.95 87.59 81.61 84.49 86.35 84.15 

Km 8.05 1.91 77.09 83.77 78.80 80.98 82.97 80.91  

dHm 5.43 2.49 80.28 84.38 82.52 84.09 82.48 83.03  

Table 4. NR (%), average ACC (%) per block size, average AUC (%) per SNR, and PRC (%) results for 524 
feature space dimension 13. Best NR and PRC results are highlighted in boldface. 525 

4.3 Comparison to other methods 526 

We compared our proposal with the baseline parameter configuration – (4 x 4) block 527 

size – with other methods commonly used for audio processing, namely: MFCC, LPCC, 528 

PNCC and SSCH. To perform a fair comparison, we employed the same relevant parameters 529 

for the calculations namely, 50 ms windows with 25 ms shift and a Kaiser window with β = 530 

3.5. We used 52 filters to compute MFCC, PNCC and SSCH. LPCC are directly derived from 531 

linear predictive coefficients. The final dimension is 13. Regarding PNCC, we employed the 532 

standard parameter configuration provided by the authors in [17], whereas SSCH 533 

computation is based on histograms using 38 bins and filters with 3 Barks width [31].  534 

 Fig. 7 shows the comparison results. We have summarised all the results obtained for 535 

the different moment families in boxplots to provide a general comparison with the state-of 536 

the-art methods. All the evaluated moments outperform the state-of-the-art methods at their 537 

corresponding SNR values. All moment families yield higher average SEN and SPE results 538 

regardless the SNR. Among the four compared methods, PNCC offers the best sensitivity 539 

regardless the SNR whereas MFCC performs equivalently in terms of SPE. LPCC are the 540 

worst performing for both SEN and SPE regardless the SNR.  541 
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 542 

Fig. 7 Comparative results between our proposal and other methods (MFCC, LPCC, PNCC and SSCH). 543 
Boxplots in the left hand side summarise the results obtained with all the moment families. Performance 544 
for compared methods is presented on the right hand side. 545 

5 Discussion 546 

5.1 Analysis of the proposed method 547 

From a holistic perspective, the obtained results are satisfactory performance-wise 548 

regardless of the moment family and the employed block size. To some extent, this validates 549 

our proposal to extend the applicability of moment theory for audio processing. Despite these 550 

good overall results, each moment family offers a different performance. Discrete orthogonal 551 

moments (Tm, Km and dHm) achieve better PRC than FMm and HUm, whereas Lm are 552 

equivalent. FMm and HUm have other properties that account for these results. FMm require 553 

a transformation of the coordinate space whereas HUm are not orthogonal and this increases 554 

information redundancy among the involved orders. Thus, the discretisation error seems to 555 

have a smaller effect than the coordinate system and, especially, the lack of orthogonality. In 556 

contrast, the original dimension in FMm and HUm is smaller (Table 2), so their 557 

computational load will be smaller as well (for FMm, we consider the transformation to polar 558 

coordinates negligible in terms of computational complexity). They are therefore less 559 

effective but more efficient.  560 
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Interestingly, Tm performed the best among discrete orthogonal moments regarding 561 

PRC but worse than Km and dHm concerning NR. Even though Tm are the simplest ones, 562 

they present two suitable properties for pattern recognition, namely: being defined in a 563 

discrete domain and orthogonality. The definition of Tm is the one that better maps to the 564 

definition of the studied energy patterns. Km and dHm allow for a better pattern analysis on 565 

the basis of their locality and the use of a non-uniform lattice, which may be the reason 566 

behind their better NR. When comparing Km and dHm, we observe that the use of a non-567 

uniform lattice does not yield significant improvements in terms of PRC or NR. The size of 568 

the Bkj blocks can explain this behaviour. Due to the relative smaller block size comparison to 569 

the size of the spectrogram, having a non-uniform lattice does not benefit the most. 570 

Considering wr values, PRC and NR results are better for wr = 8 than wr = 4. In fact this 571 

behaviour is observed for all the studied moments. This can be related to the duration of the 572 

positive class events. Audio-cough events usually occur in bursts, the so-called cough 573 

episodes (an example is depicted in Fig. 8). A cough episode usually lasts between 500 ms 574 

and several seconds. In consequence, wr = 8 better exploits the temporal dynamics of these 575 

events. As for the main drawback of the proposed method – the classification of inter-event 576 

boundary windows – it can be alleviated by using post-processing techniques to improve 577 

segmentation of the target events in such parts [51].   578 

 Both PRC and NR drop when wc is enlarged. A coarser-grained spectral 579 

characterisation might be the underlying reason. The larger the energy patterns, the higher the 580 

number of frequency bands that must be characterised by the moments at once. On the other 581 

hand, this property allows reaching a balance between efficiency and effectiveness according 582 

to equation (5).  583 
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 584 

Fig. 8 Representation of a cough episode 585 

To conclude the analysis, the feature selection step is discussed. Table 5 shows the 586 

selected features for (8 × 8) Km (similar selections were observed in other moments). The 587 

number of selected features accounts for the energy patterns for each moment order as in 588 

Table 2 – i.e    13,10,0  qp ,    26,140,1  , …,    78,662,0  . In the 589 

light of this example, the following can be inferred: many significant features are present for 590 

every SNR value (e.g. the four most meaningful features are the same), while others are 591 

present only for two SNRs (e.g. 66 in 3 dB and 15 dB) and others are only present for one of 592 

the SNR levels (e.g. 20, 22 and 24 in -6 dB, 26 in 3 dB or 21 and 54 in 15 dB). From an 593 

overall perspective, the majority of the selected features for the three SNR values belong to 594 

combinations  0,0  qp  or  0,1 . This supports our initial hypothesis that lower order 595 

moments are also more noise-robust in audio signal processing. 596 

 Selected features 

SNR 

[dB] 
1º 2º 3º 4º 5º 6º 7º 8º 9º 10º 11º 12º 13º 

-6 14 15 1 53 16 25 19 20 18 22 24 2 3 

3 14 1 15 53 16 25 66 2 13 19 3 18 26 

15 14 1 53 15 66 2 54 21 16 18 3 25 19 

Table 5 Example of the selected features for each SNR; Case of Km and (8 x 8) block size 597 

5.2 Comparison with other methods 598 

We computed four additional feature sets to perform a comparative evaluation in 599 

Section 4.3. Results show that the proposed approach outperforms the state-of-the-art feature 600 
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sets. Additionally, differences in performance among the four compared methods can also 601 

shed some new light on the AED discipline, especially when less common audio signals – 602 

like acoustic biomedical signals – are the goal of the analysis.  603 

The simplest method – LPCC – offers the lowest performance. On the other hand, 604 

MFCC, PNCC and SSCH exhibit different behaviours. Among these three, MFCC are the 605 

simplest and most widely applicable feature set whereas PNCC are the opposite. Besides, 606 

PNCC and SSCH were designed explicitly for robust speech detection. On this basis, it seems 607 

plausible the superiority of PNCC regarding SEN performance. PNCC incorporate a noise-608 

suppression algorithm based on asymmetric filtering that suppresses background sounds and 609 

a module that accomplishes temporal masking [17]. They are overcome by MFCC regarding 610 

SPE though, which constitutes an interesting result. Speech signals belong to the negative 611 

class in our study while they are in the positive class according to the original design of 612 

PNCC [17]. This may be the reason why a more straightforward method such as MFCC 613 

generalises better against a diverse negative class (see Section 3.1). Other factors that may 614 

explain the PNCC behaviour are the limitation of the frequency range between 0 and 2000 Hz 615 

and the acoustic and spectral properties of audio-cough events. Speech signals cover the 616 

[0,4000] Hz range, so the PNCC noise-suppression algorithm is thought to provide its 617 

maximum capacities in such frequency range. In the same line, the acoustic and spectral 618 

properties of audio-cough events (a low-frequency signal without a clear tonal structure) are 619 

likely to make noise-suppression algorithm treat them as noise, so we do not fully benefit 620 

from this innovation.  621 

Another remarkable result is the equivalent SEN performance between MFCC and 622 

SSCH. SSCH is a feature set based on the centroid and energy of the spectrum after the 623 

application of a filterbank. Signals like speech or music have a clear tonal structure that can 624 

be characterised through spectral centroids, spectral bandwidths or spectral crest factor 625 

measures [52]. However, other signals such as cough do not have such a clear structure. For 626 

example, the intermediate and voiced phases of an audio-cough event are very subtle, so it is 627 

difficult to consistently estimate certain properties like pitch or formants in overlapping 628 

sound conditions.  629 

 Our proposal is more complex than previous simple AED features such as MFCC or 630 

LPCC. Building the Bkj blocks and moment computation increase the computational load. 631 

Accuracy is not undermined by this additional complexity, although it could be argued that 632 

real-time performance is. However, taking advantage of the technological background for 633 
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image processing can compensate the extra load. Nowadays, many devices such as 634 

smartphones, laptops, or tablets have Graphical Processing Units (GPU). GPU allow parallel 635 

computation of many simple operations provided the structure of the data is suitable and that 636 

is the case for Bkj blocks. Hence, a GPU-implementation would increase the technology 637 

readiness level (TRL) of this proposal. Likewise, some moment algorithms have been studied 638 

in the area of applied mathematics, with currently existing methodologies for their efficient 639 

computation [45]. Finally, some moment families are actually efficient implementations of 640 

polynomial computations [41], [43], [44]. 641 

SSCH and PNCC are complex methods for speech detection that require more design 642 

choices than our proposal [17], [31]. This is a shortcoming when using them in other audio 643 

processing tasks. Conversely, our proposal is aligned with a divide-and-conquer philosophy 644 

to face AED problems. The smaller the number of parameters, the easier the method 645 

configuration. If the best-performing feature parameter configuration is not good enough, one 646 

can always resort to complementary techniques for noise suppression [53], [54], post-647 

processing [51] or more complex classifiers [50] such as support vector machines, hidden 648 

Markov models or nearest feature line. This way, the system will offer more modularity and 649 

computing the feature set will not constitute an initial difficulty.  650 

Finally, our performance is equivalent to previous commercial cough detectors [19], 651 

[20]. They employed other signals apart from audio-cough events, however. Alike, the 652 

method presented in [23] reported comparable SEN values whereas in [24] the recall is worse 653 

and they use several classifiers instead of only one. The SIF approach in [28] is intended for 654 

robust AED. However, it relies on a very high-dimensional feature space, which constitutes a 655 

disadvantage that limits the applicability in real-life problems.  656 

6 Conclusions and future directions 657 

6.1 Conclusions 658 

This paper proposes the extension of moment theory to perform audio-cough detection. 659 

The proposal borrows the first steps from MFCC (time-frequency and application of a filter 660 

bank defined in the Mel scale) and introduces moment calculation in the latest stage to 661 

characterise energy patterns in a particular time frame and for specific frequency bands. The 662 

new feature set achieves overall good cough detection capability and noise robustness. 663 
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Our proposal is validated using a signal database with three different SNRs: -6, 3 and 664 

15 dB. The experimental results confirm the capability of our approach to solve the AED 665 

problem at hand. Discrete orthogonal moments (Tm, Km and dHm) were the best performing. 666 

In particular, Tm offered the highest PRC and do did dHm for NR. Regarding the 667 

configuration of inner parameters, our analysis showed that they directly affect the 668 

performance of the method. Specifically, the temporal length of energy patterns (wr) is related 669 

to the temporal dynamics of positive class events. On the other hand, the frequency length of 670 

energy patterns (wc) partially determined the pattern recognition capabilities and noise 671 

robustness. Together with the number of filters (M), these parameters determined the 672 

dimension of the feature space. The use of lower order moments is advisable to avoid 673 

problems in the definition of the polynomials and, according to our results, they are 674 

inherently more robust against overlapping sounds.  675 

The comparison of our approach to other methods (MFCC, LPCC, PNCC and SSCH) 676 

shows the superiority of the proposal and confirms our initial hypothesis that ad-hoc audio 677 

signal processing methods do not always provide the same performance when applied to 678 

other audio signals and/or in other contexts.  679 

6.2 Future directions 680 

The following paragraphs describe some additional future research that can be 681 

performed to seize the applicability of our proposal in AED. Firstly, in applications where the 682 

spectral content is of interest, more complex frequency decomposition methods such as 683 

parametric estimations of the PSD (e.g., Yule-Walker [32] or correntropy-based spectral 684 

characterisation [55]) could be used. On the one hand, these estimations may provide richer 685 

information at low level without affecting the main features of the method. On the other 686 

hand, their computation tends to be less efficient than in the case of the Fourier Transform via 687 

the FFT algorithm. Alternative scales can also be used for establishing the limits of the filters 688 

in the filter bank. For example, some audio processing methods use the Octave scale (e.g. the 689 

Octave spectral contrast used in music genre classification [56]) or the Bark scale as in SSCH 690 

[31]. For some other applications, changes do not need to be limited to the scale but also to 691 

the shape of the filters. Instead of triangular filters, rectangular filters or other more complex 692 

definitions such as biologically inspired gammatone filters could be used [57].  693 
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Finally, our results show the potential of the proposed methodology to become part of 694 

the machine hearing toolset especially for the diagnosis of diseases based on acoustic 695 

biomedical signals like cough [8], asthma wheeze [58] or lung sounds [49], which are 696 

increasingly grabbing more attention thanks to new tele-monitoring technology [59], [60], 697 

[61]. Further classification of the detected cough events can be used to differentiate between 698 

dry or productive coughs, to early detect a specific disease (e.g. lung cancer), or to assess the 699 

severity of a condition (detection of COPD –Chronic Obstructive Pulmonary Disease- 700 

exacerbations). However, not only clinical applications would benefit from the extension to 701 

moment theory here proposed. This approach could potentially be applied to any type of 702 

audio signal, since the analysis is ultimately based on the energy content in different 703 

frequency bands and does not rely on properties such as pitch or formants which can be 704 

difficult to estimate for some signals.  705 
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