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 Abstract 

 It is unclear, what the underlying cardiovascular mechanisms are that give rise to the high level of 

aerobic fitness seen in youth soccer players. The aim of the study was to evaluate global and 

regional markers of systolic and diastolic function in a group of pre-adolescent soccer players during 

an incremental exercise test. Twenty-two, male soccer players (SP) from two professional soccer 

clubs (age: 12.0 + 0.3 years) volunteered for the study. Fifteen recreationally active boys (CON), of 

similar age (age: 11.7 + 0.2 years) were also recruited. All boys underwent a cycle ergometer test to 

exhaustion. Cardiac dimensions were determined using M-mode echocardiography. During 

submaximal and maximal exercise, continuous-wave Doppler ultrasound techniques were used to 

derive stroke volume (SVIndex). Tissue-Doppler imaging was used to quantify systolic (S’adj) and 

diastolic function (E; E’adj and E/E’) at rest and both submaximal and maximal exercise intensities. 

Speckle tracking echocardiography was used to determine peak longitudinal ε at submaximal 

exercise intensities. SP demonstrated significantly (P ≤ 0.05) greater peak VO2 values than CON (SP: 

48.0+5.0 vs CON: 40.1+7.5 mL·kg-1 ·min-1). Allometrically scaled to body surface area left ventricular 

end-diastolic volume (LVEDV) was larger (P ≤ 0.05) in the SP (51.3+9.0) compared to CON (44.6+5.8 

mL·BSA1.5). At the same relative, submaximal exercise intensities, the SP demonstrated greater 

SVIndex, cardiac output (QIndex) and E. No differences were noted for peak longitudinal ε during 

submaximal exercise.  Factors that augment pre-load and LV volume appear to determine the 

superior aerobic fitness seen in the soccer players.   

Key Words: Youth Soccer; Tissue-Doppler Imaging; Cardiac Strain; Exercise   

 

Introduction  

Adolescent and youth soccer within professional clubs is characterised by training and match-play 

intensities that are in excess of 70% of the maximal aerobic capacity of the young player1. 

Furthermore, the tactical and technical training that these athletes undergo can generate 

physiological loads in excess of 85% of the maximal heart rate1. This type of training load produces 

acute cardiovascular adjustments in stroke volume, cardiac output and total peripheral resistance 

that results in a transient volume overload2 on the left ventricle (LV). Evidence exists to suggest that 
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the physiological superiority of adolescent and youth soccer players compared to their recreationally 

active peers is a response to long-term training rather than any growth or maturity-linked effects3. 

Further, the impact of training status on LV structure and function at rest may help explain their 

superior physical performance capacity4, 5. Whilst the evaluation of cardiac structure and function at 

rest can provide some mechanistic insight with regard to exercise performance6, the interrogation of 

LV functional responses during exercise has greater potential to explain individual differences in 

physiological performance capacity4, 7. Previous work in this area has focussed upon identifying the 

determinants of superior aerobic capacity in both male and female, highly trained, adolescent soccer 

players4, 7. It is unclear, however, the impact that  a reduced number of years of soccer training 

exposure would have on influencing cardiac morphology and function at both rest and uniquely 

during exercise in the pre-adolescent player. 

  

The emergence of speckle tracking echocardiography (STE), which reliably assesses regional 

myocardial tissue deformation in the longitudinal plane of motion8 has the potential to provide 

further mechanistic insight into the link between LV performance and maximal aerobic capacity. 

There are a small number of studies that have characterised cardiac deformation during exercise in 

the child and adolescent populations8, 9. To date, this approach has not been adopted in highly 

trained pre-adolescent soccer players in an attempt to differentiate the impact of training status on 

regional LV function.  

  

Consequently, the aims of this study were; 1) to evaluate LV morphology and global and regional 

markers of systolic and diastolic function at rest in highly-trained, pre-adolescent soccer players (SP) 

and healthy control participants (CON), 2) to compare global and regional LV systolic and diastolic 

responses at two, similar relative exercise intensities in the SP and CON and 3) to compare maximal 

exercise performance capacity (maximal aerobic capacity), as well as global markers of LV systolic 

and diastolic function at peak exercise intensity .It was hypothesised that the SP would demonstrate: 

1) larger LV morphology and superior global LV function than the CON at rest; 2) no significant 

difference in global and regional markers of LV function compared to the CON during submaximal 

exercise and 3) greater QIndex and SVIndex at peak exercise compared to the CON.    

  

 Methods  

 Participants  

Twenty-two highly trained youth soccer players (SP, mean age: 12.0+0.3 years) and 15 recreationally 

active individuals (CON, mean age: 11.7+0.2 years) volunteered to participate in the study. The SP 

were recruited from two, Category One Youth Soccer Academies affiliated to two professional 

English Championship soccer clubs. The SP training profiles were as follows: 4.5 ± 1.5 years training, 

11 ± 1 months per year training, 4 ± 1 training sessions per week and 9.4 ± 2.4 hours per week of 

training. The SP also played one competitive match per week and had been engaged in competitive 

soccer matches for 4 + 2 years. The CON were all recreationally active. Recreational activity was 

defined as taking part in physical education classes at school and the occasional out of school sports 
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activity. These participants, however, were not involved in any systematic training. All participants 

underwent a physical examination and completed a medical history questionnaire. Exclusion criteria 

included the use of any medications that would influence cardiovascular function and any personal 

or early family history of cardiovascular disease. Informed parental and participants’ written 

informed consent was obtained prior to participation. All procedures performed in the study were in 

accordance with the ethical standards of the Declaration of Helsinki and the study was approved by 

Staffordshire University Research Ethics Committee.  

   

 Study Design  

The study employed a prospective, cross-sectional, cohort assessment of cardiac and exercise 

performance in highly trained pre-adolescent SP and CON. Within testing sessions, repeated 

measures of a number of physiological variables were completed at rest and during progressive 

exercise. All testing took place at the training grounds of the two soccer clubs and at a local school 

for the CON participants. Participants were instructed to refrain from exercise on the day preceding 

the test. Furthermore, all participants were also informed to refrain from consuming any drinks 

containing sugar or caffeine as well as the consumption of any food in the two hours preceding the 

testing session. 

  

 Protocol/Measurements  

Physical activity and training questionnaires4 were completed prior to the testing. Following this, 

stature, sitting height and body mass were measured. Maturity status was quantified using both self-

assessment, Tanner Stage method10 and maturity offset11. Resting arterial blood pressure was 

recorded in the left arm by an automated blood pressure cuff (Boso, Medicus, Jungingen, Germany) 

and heart rate was assessed by a 12-lead electrocardiogram (ECG) (CardioExpress SL6, Spacelabs 

Healthcare, Washington US). Resting echocardiographic measurements were taken in the supine 

position. This was then followed by resting echocardiographic measurements taken in an upright 

position on the cycle ergometer. Participants then completed a cycle ergometer test to volitional 

exhaustion, with echocardiographic and open circuit, breath-by-breath metabolic measurements 

obtained throughout. The participants pedalled at 60 rpm with an initial workload of 20 W and this 

increment was maintained until 60 W Each stage was 3 minutes in duration.  

Echocardiographic measurements were taken 90 s into each stage for the first three stages. After 

this third stage, the workload increments were adjusted on an individual basis until volitional 

exhaustion. Final echocardiographic measurements were taken immediately prior to peak exercise. 

Submaximal exercise inter-group comparisons were made at two relative exercise intensities (RE), to 

ensure that cardiovascular evaluations were made at the same approximate metabolic load. These 

intensities were at 40W in the SP, which equated to 46.7+5.6 %VO2peak and 20W in the CON, which 

equated to 46.5+8.0 %VO2peak. These two intensities were denoted as RE (1). The second relative 

exercise intensity comparison was at 60W in the SP, this equated to 56.8+6.0 %VO2peak and 40W in 

the CON: 60.5+10.4 %VO2peak and denoted as RE (2). 
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  Echocardiographic Measurements: Resting indices of LV structure  

All echocardiographic procedures prior to and during the cycle ergometer test were performed by 

the same experienced sonographer (DO) using a commercially available ultrasound system (VividQ 

Ultrasound System, GE Ltd, Horton, Norway). Measurements of resting LV dimensions (LV end 

diastolic dimension [LVED], LV end systolic dimension [LVES]), diastolic wall thicknesses 

(interventricular septum [VSd] and posterior wall [PWd]) were made in accordance with American 

Society of Echocardiography (ASE) guidelines12 using M-mode echocardiography. These parameters 

were scaled to the square root of body surface area13. Relative wall thickness (RWT) was calculated 

according to ASE guidelines in order to provide a marker of LV geometry. LV end-diastolic volume 

(LVEDV) and LV end-systolic volume (LVESV) were determined using the Simpson’s biplane method 

from apical 4- and 2-chamber views12. LVEDV and LVESV were then allometrically scaled13 to BSA 1.5.  

 

   

 Echocardiographic Measurements: Indices of LV function at rest and during incremental exercise  

Following supine resting measurements, participants sat in an upright position on an electronically 

braked cycle ergometer (Lode, Corival, Groningen, Netherlands). Imaging of the left ventricle was 

performed at rest and at 1:30 s into each of the first three stages, from the focused, apical four-

chamber view and the suprasternal notch with the participant in an upright, but forward-leaning 

position on the cycle ergometer. Offline analysis included, peak early diastolic filling velocity (E). 

Where clearly discernible, the E wave was measured. During faster heart rates, however, fusion of 

the E and atrial (A) waves meant that a single peak diastolic filling velocity was measured, but still 

termed E for ease of comparison. Pulsed wave tissue-Doppler imaging determined peak longitudinal 

mitral, lateral, annular velocities in systole (S’) and early diastole (E’). Both E’ and S’ were adjusted 

for heart size by LV Length14. Similar to conventional blood flow assessment, the peak diastolic 

myocardial velocity was utilized, when fusion of E and A’ occurred. E/E’ (E ratio) was calculated as an 

estimate of LV filling pressure and thus preload15.  

  

Stroke volume (SV) was calculated using continuous–wave Doppler from the suprasternal notch to 

detect ascending aortic flow. The velocity-time integral (VTI) at rest and at peak exercise was 

calculated and multiplied by the resting, upright, LV outflow tract cross-sectional area. Subsequently, 

rest and peak exercise cardiac output (Q) was determined by multiplying SV by the heart rate (HR) 

(as determined from the R-R interval from the same cardiac cycle on the ECG inherent to the 

echocardiographic machine). Acceptable reliability of the Doppler echocardiographic technique for 

estimating SV has previously been established by Rowland and Willers16. Both Q and SV were 

adjusted for body surface area (QIndex and SVIndex). Arterial venous oxygen difference (AVO2) was 

computed as VO2/Q.  
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A focused apical 4-chamber orientation of the LV was acquired and optimized to improve 

endocardial delineation using frequency and gain with a single focal zone placed mid LV cavity to 

reduce the impact of beam divergence. Frame rates were maintained as high as possible within the 

working range of 40 to 90 fps. Subsequent offline analysis using dedicated speckle tracking software 

(Echopac V6.0, GE Healthcare, Horton, Norway) provided assessment of longitudinal strain (ε), 

systolic strain rate (SSR) and early diastolic strain rate (DSR) (as defined as the peak value in diastole 

allowing for early and late diastolic fusion). Global values were calculated as an average of six 

myocardial segments from the basal, mid and apical septum and lateral walls. Strain data was only 

analysed at the two relative exercise intensities [(RE (1) and RE (2)] due to poor feasibility of speckle 

tracking at higher heart rates. All images were digitally stored and analysed off-line. The average of 

three to five consecutive cardiac cycles was calculated and recorded. Good reliability of the in-

exercise longitudinal ε data has also been established by this research team8. 

  

 Gas exchange measurements during exercise  

Gas exchange data was obtained using an online gas analysis system (Cortex MetaMax 3B, Cortex 

Biophysik GmbH, Leipzig, Germany). The online gas analyser was calibrated prior to each visit 

according to the manufacturer’s instructions, using a known gas concentration and a 3 L syringe for 

manual volume calibration of the flow turbines. Peak VO2 was defined as the highest 15 s mean 

value during the final stage of exercise. This value was expressed relative to body mass. The criteria 

used to determine a true maximal effort were: 1) Participants demonstrated subjective evidence of 

exhaustion (hyperpnea, sweating and fatigue), 2) a maximal RER value greater than 1.0 or 3) a heart 

rate in excess of 180bpm4. HR was assessed by ECG and a Polar Heart rate monitor (Polar Electro, 

Kempele, Finland).   

  

 Statistical Methods  

A one-way ANOVA was used for the inter-group comparisons of: 1) cardiac morphology data, 2) 

resting global and tissue-Doppler derived variables, 3) global and tissue-Doppler derived measures at 

the two relative exercise intensities and 4) maximal exercise intensity global and tissue-Doppler 

derived variables. A sample size of 22 SP provided a (1-β) of 80% at an alpha level of 0.05. All 

statistical analyses were performed using SPSS version 23 (NY, USA).  

  

 

 Results  

There were small, but statistically significant inter-group differences in chronological age and 

stature, but all other physical or maturity status data were similar between groups (Table 1).   The SP 

demonstrated a significantly higher peak VO2 (SP: 48.0+5.0 vs CON: 40.1+7.5 mL·kg-1 ·min-1; P ≤ 0.05). 
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All participants satisfied the criteria for an exhaustive effort on the cycle ergometer and there was 

no between group difference for maximal HR (SP: 189+7 vs. CON: 186+9 beats.min-1).  

 

Resting LV structure and function  

The SP had significantly (P ≤ 0.05) larger scaled LVES∙BSA-0.5, VSd∙BSA-0.5, LVEDV∙BSA-1.5 than the CON 

(Table 2). Resting heart rate was significantly lower and resting SV index was significantly greater (P ≤ 

0.05) in SP than controls (Table 3). There was no significant between group differences in AVO2 

difference or QIndex at rest, but QIndex reserve (SP: 71+4.0 vs CON: 66+8 %) was significantly 

greater (P ≤ 0.05) in the SP. Peak aortic blood flow velocity was significantly (P ≤ 0.05) higher at rest 

in the SP compared to the CON. There was no inter-group difference in LVEF and S’ at rest and no 

significant inter-group difference in S’ reserve (SP: 60+7 vs CON: 60+11 %). Peak E was significantly (P 

≤ 0.05) higher in the SP compared to the CON at rest, but all other indices of resting diastolic 

function were not different between groups (Table 3) including E’adj reserve (SP: 41+12 vs CON: 

45+16%).  

 

LV function during submaximal and maximal exercise  

At RE (1), SVIndex, QIndex and E were all significantly greater (P ≤ 0.05) in the SP compared to the 

CON (Table 4 and see Figures 1-3). Significantly, greater QIndex and E values were also noted for the 

SP compared to the CON at RE (2), Table 4 and Figures 1-3. There were no inter-group differences for 

S’adj at RE (1) and RE (2). The only inter-group differences that emerged at maximal exercise were 

for peak aortic velocity and S’ and in each case, SP presented with significantly (P ≤ 0.05) greater 

values than CON (Table 3). 

 

Longitudinal ε during submaximal exercise  

No inter-group differences were identified for peak longitudinal ε at the two relative exercise 

intensities, RE (1): SP: -20.2+3.2 vs CON: -20.5+2.5 % and RE (2): SP: -19.3+2.9 vs CON: -19.9+2.1 %. 

Similarly, no significant inter-group differences were identified for SSR at the two relative exercise 

intensities. RE (1), SP: -1.4+0.1 vs CON: -1.3+0.2 1/s and RE (2): SP: -1.6+0.3 vs CON: -1.6+0.2 1/s. 

There was also no significant difference in DSR between the two groups; RE (1), SP: 2.2+0.5 vs CON: 

2.1+0.4 1/s and RE (2): SP: 2.3+0.3 vs CON: 2.0+0.3 1/s. 
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 Discussion  

  

 The major findings of this study were that there was evidence of larger LV morphology and greater 

peak aortic velocities and E at rest in the SP compared to the CON. Superior SVIndex, QIndex and E in 

the SP during submaximal exercise were identified. Based on the cardiac strain data (peak 

longitudinal ε, SSR and DSR) there was no evidence to suggest that training status resulted in 

superior intrinsic contractility in the SP during submaximal exercise. There was, however, evidence 

of superior global systolic function (S’ and peak aortic velocity) at maximal exercise in the SP.   

  

There was some evidence to suggest that exercise-induced LV remodelling had occurred in the elite 

pre-adolescent SP based on linear dimensions and volume data.  These morphologic changes suggest 

that highly trained SP can present some characteristics of the “Athlete’s Heart”, even at a pre-

adolescent stage. This supports previous research in pre-adolescent soccer players17, 18 and older 

male4 and female7 adolescent soccer players, who had been exposed to slightly longer, systematic 

soccer training (7-9 years of training). In a cross-sectional study, it is only possible to speculate, that 

the greater LVEDV seen in the SP is a by-product of training-induced increases in plasma volume19 

and/or repetitive haemodynamic overload resulting in eccentric chamber hypertrophy20. The 

similarity in morphological findings in the present study to that seen in the older, adolescent soccer 

players4, 7 suggests either a genetic pre-disposition for a larger LV or exercise-induced, LV cardiac re-

modelling in response to limited training exposure in the pre-adolescent soccer players. These 

findings are further supported by the conclusions from McLean et al’s21 systematic and meta-

analysis of the electrical and structural adaptations of the paediatric athlete’s heart.  In this 

comprehensive review, these authors concluded that clear evidence existed of exercise-induced 

cardiac re-modelling in the pre-adolescent years. 

  

At rest, SP generated a greater SVIndex compared to CON, which is a likely consequence of an 

increased LVEDV in the presence of unaltered LVEF22. Left atrial evaluation was beyond the scope of 

the present study, but evidence exists to suggest that exercise-induced atrial re-modelling exists in 

pre-adolescent athletes and this could influence SVIndex23. As, these authors established a moderate 

relationship between increases in left atrial volume and increases in SVIndex at rest following a 5 

month training period. Peak aortic velocity (a marker of systolic function) at rest was augmented in 

the SP and was also a product of the greater LVEDV seen in the young players. The only significant 

between group differences for global markers of diastolic function at rest was a higher E in the SP; 

that existed even after adjusting for differences in resting HR. A higher E in the SP, independent of 

HR, likely contributes to the increased LVEDV via a possible plasma-volume induced increase in pre-

load19. 

 

It is unlikely that this finding represents substantive evidence of superior diastolic function in the SP 

at rest, as there was a lack of inter-group differences in E’. The findings from the literature are 

equivocal, as enhanced24, 25 and unchanged22 E values have been noted in highly trained, child 

endurance athletes at rest.  
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At the two similar, submaximal relative exercise intensities, the SP demonstrated superior E, SVIndex 

and QIndex compared to the CON. This evidence suggests that when exercising at the same 

metabolic load, factors that augment pre-load (enhanced plasma volume and greater LVEDV) drive 

superior mitral in-flow, with concomitant increases in SVIndex and QIndex. Greater SVIndex was also 

identified in both adolescent male and female soccer players compared to recreationally active 

control subjects when exercising at absolute, submaximal workloads4, 7. These authors speculated 

that increased ventricular volume acted as the pre-cursor for the elevated SVIndex seen in their 

study rather than any training-derived functional adaptation in diastolic function. LVEDV was not 

measured in either of these studies. The present study indirectly confirms this hypothesis, as greater 

LVEDV values were noted in the pre-adolescent SP compared to the CON participants.  

 

 The superior QIndex reserve in the present study in the SP can potentially be explained by a 

longitudinal ε reserve. In the present study, LV mechanics were not investigated at maximal exercise. 

Nottin et al.26 have hypothesized that a lack of difference in LV mechanics at rest between trained 

and untrained individuals represented a mechanical reserve on which athletes’ can draw on at 

maximal exercise to enhance cardiac performance. This strain reserve reflects the LV capacity to 

enhance contractile function during exercise, irrespective of resting values (QIndex reserve), as seen 

in the SP in the present study. The importance of contractile reserve evaluation by exercise 

echocardiography has been highlighted in mitral regurgitation patients27. Furthermore, QIndex 

reserve has been used in the past to explain the capacity of the LV to recover following heart 

failure28. These findings have been supported by further Dobutamine stress echocardiography 

research29 that has demonstrated a direct relationship between contractile reserve and 

improvements in LVEF following β-blocker therapy in patients with advanced chronic heart failure. 

The improved LVEF underpins the improved contractile reserve and provides the basis for the ability 

for CHF patients to respond to stress, as seen during exercise. 

  

A paucity of research exists with regard to the quantification of diastolic function during upright 

exercise in children. Consequently, a novel aspect of the present investigation was the interrogation 

of global markers of diastolic function in an upright body position. This approach mimics the posture 

for most sports activities and minimizes the confounding effects of altered body position on 

haemodynamic responses during exercise30. 

  

At the two relative exercise intensities, SP presented with greater E compared to CON. These 

findings mimic E data obtained in adolescent male and female soccer players (15 years) exercising at 

absolute workloads during upright cycle ergometer exercise4,7.These authors demonstrated superior 

E in the SP during submaximal exercise, but this did not achieve statistical significance. There were 

no inter-group differences in E’, when exercising at the two relative exercise intensities in the 

present study. These findings are similar to that seen in the adolescent male and female soccer 

players when exercising at absolute submaximal workloads4, 7.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

At the two relative exercise intensities, there were no inter-group differences in E/E’ (E ratio). E ratio 

is considered an indirect marker of left atrial pressure and these findings suggest that the increase in 

E in both SP and CON at the submaximal intensities was a product of enhanced LV relaxation 

properties, rather than the result of any elevated atrial pressures. A similar pattern was also noted in 

older adolescent male and female soccer players4, 7. Data from the present study suggests that there 

is no strong evidence to support the hypothesis that enhanced diastolic function during exercise in 

these highly trained pre-adolescent soccer players is responsible for their superior aerobic capacity. 

Based on the S’ data, there was also no evidence of superior systolic function in the SP during 

submaximal exercise. These findings are similar to previous work from our research group in older, 

highly trained, adolescent male and female soccer players4, 7. 

 

In the present study, there was no evidence that training status altered peak longitudinal ε at rest, 

which confirms data from elite, adult male cyclists26. At the two, relative, submaximal exercise 

intensities, there were no inter-group differences in peak longitudinal ε and these findings support 

the global systolic measurements (S’). There is a paucity of research with respect to the 

quantification of regional wall deformation during exercise in pre-adolescent populations. Recent 

work by Pieles et al9 demonstrated a pattern of increased peak longitudinal ε from rest with a 

subsequent plateau during submaximal, supine cycle ergometry in recreationally active boys and 

girls (13.2 years). Furthermore, adult data during supine and semi-supine exercise also demonstrates 

a similar a pattern for peak longitudinal ε31, 32. The lack of inter-group differences in the present 

study in peak longitudinal ε, suggested no intrinsic differences in contractility during submaximal 

exercise.   

  

Two markers of global systolic function (S’adj and peak aortic velocity) demonstrated significant 

inter-group differences at maximal exercise intensity. This may stem from the larger LVEDV seen in 

the SP inducing earlier and better stretching of myocardial fibres from a more efficient use of the 

Frank-Starling mechanism20. The researchers acknowledge that this finding is not supported by the 

submaximal peak longitudinal ε findings and could represent a limitation of the tissue-Doppler 

approach to quantifying systolic function. The systolic findings at maximal exercise were somewhat 

similar to the pattern seen in highly trained, adolescent male soccer players4. This previous 

investigation demonstrated augmented peak aortic velocity values at maximal exercise in the 

adolescent male soccer players compared to their recreationally active peers, but they did not 

achieve statistical significance (SP: 231 vs. CON: 208 cm∙s-1). There were no significant inter-group 

differences for any markers of diastolic function at maximal exercise intensity and this mimicked the 

findings previously seen in both the male and female adolescent soccer players4, 7. 
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There were some limitations associated with the study. A cross-sectional design limits our ability to 

delineate the specific influence of training on our outcome measures and the use of speckle tracking 

echocardiography limits the frame rate that can be used. Consequently, strain and strain rate can 

only be determined at submaximal exercise intensities during upright cycle ergometry exercise. In 

addition, due to ethical constraints, plasma volume data was unable to be obtained from the 

participants. An extensive evaluation of bi-atrial and right ventricular function33 was beyond the 

scope of the present study. It is possible, however, that an interrogation of these two areas would 

provide a more comprehensive understanding of the role of elite youth soccer training on 

morphological and functional adaptations in the pre-adolescent player. 

 

In conclusion, there was some evidence in the present study of exercise-induced LV remodelling in 

the highly trained youth soccer players. The SP also presented with increased early diastolic filling 

and greater peak aortic velocity at rest compared to the CON; this contradicted our original 

hypothesis. Based on the tissue-Doppler and strain data, there was no real evidence to suggest that 

training status had any impact on submaximal diastolic and systolic function. Superior systolic 

function and greater cardiac reserve were noted at maximal exercise intensity in the highly trained 

pre-adolescent soccer players compared to their recreationally active peers. The similarity in the 

morphological attributes of the pre-adolescent SP at rest and their functional characteristics during 

submaximal and maximal exercise to that seen in the previous study with adolescent male soccer 

players4; suggests that the combined influence of genetic pre-disposition and responsiveness to 

training influences cardiac morphology and functional adaptations in these young players. It is 

acknowledged that the true effect of high-intensity, intermittent soccer training on cardiac 

morphological and functional adaptations in highly trained young soccer players can only be 

answered through the longitudinal evaluation of these young athletes and this question warrants 

further investigation. 

 

Perspective 

The vast amount of published literature in this area has quantified cardiac morphology and function 

at rest in the highly trained, young, endurance athlete21 and demonstrated exercise-induced 

morphological and functional changes in these individuals. There is a paucity of knowledge of the 

impact that high-intensity, intermittent exercise (characteristics of soccer training and match-play) 

can have on changes in cardiac structure and function at rest and uniquely during exercise. This is 

particularly true in the pre-adolescent athlete that has not yet been exposed to the changes in the 

hormonal milieu during puberty, but is exposed to high volume and intensity training. While the 

primary focus of this study was not a screening study, it was also encouraging to see that the 

adaptations noted in the soccer players were not commensurate with any pathological structure and 

function in these young athletes.  

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Acknowledgements  

The authors would like to thank Mr. Marc Campbell (Wolverhampton Wanderers FC) and Dr. Russ 

Wrigley (Blackburn Rovers FC) with their help in the organization of the data collection sessions at 

the football clubs and Ms. Katie Davis and Ms. Leanne Brittle for their help with the organization of 

the testing sessions of the recreationally active control participants at the school (Staffordshire 

University Academy).  We gratefully acknowledge the help of: Ms. Jenna Hulme, Mr Mark Bailey and 

Mr. Justin Rich from Staffordshire University for their technical support with the data collection at 

the school and the two football clubs and finally we appreciate the dedication and enthusiasm 

shown by the boys at the school and the two football clubs for their participation in the research 

project.  

  

This research did not receive any specific grant from funding agencies in the public, commercial, or 
not-for-profit sectors.  No companies or manufacturers will benefit from the results of the present 
study and the authors report no conflict of interests. 
 
  

References  

1.Wrigley RD, Drust B, Stratton G, Scott M, Gregson W. Quantification of the typical weekly in-season 

training load in elite junior soccer players . J Sports Sci 2012; 30(15):1573 – 1580.  

 

2. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: Classification of Sports. J Am Coll 

Cardiol 2005; 45(8):1364–7.  

 

3. Wrigley RD, Drust  B, Stratton G,  Atkinson  G,  Gregson W. Long-term Soccer-specific training 

enhances the rate of physical development of academy soccer players independent of maturation 

status. Int J Sports Med 2014; 35(13):1–5.  

 

4. Rowland TW, Garrard M, Marwood S, Guerra ME, Roche D, Unnithan VB. Myocardial performance 

during progressive exercise in athletic adolescent males. Med Sci Sports Exerc 2009; 41(9):1721-

1728. 

 

5. Pelliccia A, Caselli S, Sharma S, et al. European Association of Preventive Cardiology (EAPC) and 

European Association of Cardiovascular Imaging (EACVI) joint position statement: recommendations 

for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s 

heart. European Heart Journal doi: 10.1093/eurheartj/ehx532. [Epub ahead of print] 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

6. Rowland TW, Unnithan VB, MacFarlane NG, Gibson NG, Paton JY. Clinical manifestation of the 

“athlete’s heart” in prepubertal male runners. Int J Sports Med 1994; 15(8): 515-519. 

 

7. Rowland T, Unnithan V, Roche D, Garrard M, Holloway K, Marwood S.  Myocardial function and 

aerobic fitness in adolescent females.  Eur J Appl Physiol  2011;111(9):1991-1997. 

 

8. Unnithan VB, Rowland T, Lindley MR, Roche DM, Garrard M, Barker P. Cardiac strain during 

upright cycle ergometry in adolescent males.  Echocardiography 2015; 32(4): 638-643.  

 

9. Pieles GE, Gowing L, Forsey J, et al. The relationship between biventricular myocardial 

performance and metabolic parameters during incremental exercise and recovery in healthy 

adolescents. Am J Physiol Heart Circ Physiol  2015; 309(12):H2067-2076.   

 

10. Tanner J. Growth at adolescence (2nd ed.). Oxford: Blackwell Scientific, 1962. p. 31-39. 

 

11. Sherar LB, Mirwald RL, Baxter-Jones AD, Thomis M. Prediction of adult height using maturity-

based cumulative height velocity curves. J Pediatr. 2005; 147(4):508-14.    

 

12. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by 

echocardiography in adults: an update from the American Society of Echocardiography and the 

European Association of Cardiovascular Imaging. J Am Soc  

Echocardiogr 2015; 28(1):1-39. 

 

13. Batterham, AM, George, KP, Whyte G, Sharma S, McKenna W.  Scaling cardiac structural data by 

body dimensions: a review of theory, practice, and problems. Int J Sports Med 1999;20(8):495-502.  

 

14. Batterham A, Shave R, Oxborough D, Whyte G, George K.  Longitudinal plane colour tissue-

Doppler myocardial velocities and their association with left ventricular length, volume, and mass in 

humans. Eur J Echocardiogr 2008; 9(4):542–6.  

 

15. Nagueh SF,  Smiseth OA,  Appleton CP, et al. Recommendations for the evaluation of left 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ventricular diastolic function by echocardiography: An update from the American Society of 

Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 

2016; 29(4): 227-314.  

 

16. Rowland TW, Willers ME. Reproducibility of Doppler measures of ventricular function during 

maximal upright cycling. Cardiol Young. 2010; 20: 676-679.   

 

 

17. Zdravkovic M, Perunicic J, Krotin M, et al. Echocardiographic study of early left ventricular 

remodeling in highly trained preadolescent footballers. J Sci Med Sport  

2010; 13(6): 602-606.  

 

18. Pela G, Crocamo A, Li Calzi M, et al. Sex-related differences in left ventricular structure in early 

adolescent non-professional athletes. Eur J Prev Cardiol 2016; 23(7): 777-784. 

 

19. Koch G, Rocker L. Plasma volume and intravascular protein masses in trained boys and fit young 

men. J Appl Physiol 1977; 43(6):1085-1088. 

 

20.Obert P, Nottin S, Baquet G, Thevenet D, Gamelin F-X, Berthoin, S. Two months of 

endurance training does not alter diastolic function evaluated by TDI in 9-11-year-old boys and girls. 

Br J Sports Med 2009; 43(2): 132-135.  

 

21. McLean G, Riding N R, Arden C L et al. Electrical and structural adaptations of the paediatric 

athlete’s heart: A systematic review and meta-analysis. Br J Sports Med 2018; 52: 230. 

 

22. Nottin S, Nguyen LD, Terbah M, Obert P. Left ventricular function in endurance-trained children 

by tissue-doppler imaging. Med Sci Sports Exerc 2004; 36(9): 1507-1513.  

 

23. D’Ascenzi FD, Solari M, Anselmi F, et al. Atrial chamber remodelling in healthy pre-adolescent 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

athletes engaged in endurance sports: A study with a longitudinal design. The CHILD study. Int J 

Cardiol 2016; 223: 325-330. 

 

24. Obert P, Mandigouts S, Nottin S, Vinet A, N'Guyen LD, Lecoq AM.  

Cardiovascular responses to endurance training in children: effect of gender. Eur J Clin Invest 2003; 

33(3):199-208.  

 

25. Triposkiadis F,  Ghiokas S,  Skoularigis I, Kotsakis A, Giannakoulis I,  Thanopoulos V. Cardiac 

adaptation to intensive training in prepubertal swimmers Eur J Clin Invest 2002;32(1):16–23.  

 

26. Nottin S, Doucende G, Schuster-Beck I, Dauzet M, Obert P.  Alteration in left ventricular normal 

and shear strains evaluated by 2D-strain echocardiography in the athlete’s heart. J Physiol.  2008; 

586 (19):4721-4733.  

 

27. Lee R, Haluska B, Leung DY, Case C, Mundy J, Marwick TH. Functional and prognostic implications 

of left ventricular contractile reserve in patients with asymptomatic severe mitral regurgitation. 

Heart 2005; 91: 1407–1412. 

 

28. Naqvi TZ, Goel RK, Forrester JS, Siegel RJ. Myocardial contractile reserve on dobutamine 

echocardiography predicts late spontaneous improvement in cardiac function in patients with recent 

onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1999; 34 (5):1537-44.  

 

29. Eichhorn EJ, Grayburn PA, Mayer SA, et al. Myocardial contractile reserve by Dobutamine stress 

echocardiography predicts improvement in ejection fraction with β-blockade in patients with heart 

failure: The β-blocker evaluation of survival trial (BEST). Circulation 2003; 108: 2336-2341. 

 

30. Rowland T, Unnithan V, Barker P, Guerra M, Roche D, Lindley M. Orthostatic effects on 

echocardiographic measures of ventricular function. Echocardiography 2012; 29 (5):523-527.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

31. Doucende G, Schuster I, Rupp T, et al. Kinetics of left ventricular strains and torsion during 

incremental exercise in healthy subjects. The key role of torsional mechanics for systolic-diastolic 

coupling. Circ Cardiovasc Imaging 2010; 3(5): 586-594. 

  

32. Stohr EJ, McDonnell B, Thompson J, et al. Left ventricular mechanics in humans with high aerobic 

fitness: adaption independent of structural remodeling, arterial haemodynamics and heart rate. J 

Physiol 2012; 590(9): 2107-2119. 

33. D’ Ascenzi FD, Pelliccia A, Valentini F et al. Training-induced right ventricular remodelling in pre-

adolescent endurance athletes: The athlete’s heart in children. Int J Cardiol 2017; 236: 270-275. 

   

Figure Captions  

  

Fig 1: QIndex responses of soccer players (n=22) and controls (n=15) at the two comparable, relative 

exercise intensities (RE (1) and RE (2)). The symbols denote the mean values. Horizontal error bars 

denote the variability (SD) in relative exercise intensity (%VO2max) and vertical error bars denote the 

variability (SD) in QIndex. At both RE (1) and RE (2), the SP demonstrated significantly greater QIndex 

responses than the CON.* denotes p≤0.05. 

  

Fig 2: SVIndex responses of soccer players (n=22) and controls (n=15) at the two comparable, 

relative exercise intensities (RE (1) and RE (2)). The symbols denote the mean values. Horizontal 

error bars denote the variability (SD) in relative exercise intensity (%VO2max) and vertical error bars 

denote the variability (SD) in SVIndex. At RE (1), the SP demonstrated significantly greater SVIndex 

responses than the CON. There was no significant inter-group difference in SVIndex at RE (2). * 

denotes p≤0.05. 

  

Fig 3: E responses of soccer players (n=22) and controls (n=15) at the two comparable, relative 

exercise intensities (RE (1) and RE (2)). The symbols denote the mean values. Horizontal error bars 

denote the variability (SD) in relative exercise intensity (%VO2max) and vertical error bars denote the 

variability (SD) in E values. At both RE (1) and RE (2), the SP demonstrated significantly greater E 

responses than the CON. * denotes p≤0.05. 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 1:  Physical characteristics of soccer players (SP; n=22) and control participants (CON; n=15).  

Values are mean + standard deviation.    

  

  SP (n=22)  CON (n=15)  

 Age (years)  12.0+0.3*  11.7+0.2  

  

 Stature (m)  

  

1.51+0.06*  1.47+0.06  

 Body Mass (kg)  40.2+5.9  43.3+12.1  

  

   BSA (m2)    

  

1.29+ 0.12  1.32+0.18  

 

  Tanner (AU)  

  

2+1  3+1  

  Maturity Offset (years)  -3.8+0.5  -3.9+0.6  

  

Age at PHV (years)  

  

 

15.8+0.7  

 

15.7+0.6  

 

* P ≤ 0.05. Body surface area (BSA); peak height velocity (PHV)  
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Table 2.  Left ventricular measurements at rest in soccer players (SP; n=22) and control participants 

(CON; n=15).  Values are mean + standard deviation.   

  

 

  

LVES (mm∙BSA-0.5)   26.7+1.8*  25.2+2.5  

VSd (mm∙BSA-0.5)   6.8+0.6*  6.2+0.5  

PWd (mm∙ BSA-0.5)   6.3+0.8  5.8+0.7  

RWT (cm)  

  

0.32+0.05  0.30+0.04  

LVEDV (mL·BSA-1.5)  51.3+9.0*  

  

44.6+5.8  

LVESV (mL·BSA-1.5)  17.6+3.5  

  

16.1+2.7  

LVEF (%)  65.7+4.1  63.6+4.7  

 

 

* P ≤ 0.05. Left ventricular (LV) end diastolic dimension (LVED), LV end systolic dimension (LVES), 

interventricular septum (VSd) and posterior wall (PWd), Relative wall thickness (RWT),  LV end-

diastolic volume (LVEDV) and LV end-systolic volume (LVESV) and LV ejection fraction (LVEF).  

 

 

 

 

 

 

 

 

 

 

  SP (n=22)   CON (n=15)   

LVED (mm∙BSA 
- 0.5 )   39 . 4 + 2 . 6   39 . 0 + 2 . 5   
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Table 3.  Cardiovascular measures at rest and maximal exercise in trained soccer players (SP) and 

control participants (CON).  Values are mean ± standard deviation.   

  

  SP (n=22)  CON (n=15)  

Heart Rate (bpm)  

Rest  

  

66+9*  

  

75+12  

Maximum  189+7.0  186+9.0  

  

SVIndex (mL·m-2)  

Rest  

  

  

47+9*  

  

  

42+4  

Maximum  56+9  52+7  

  

QIndex (L∙min-1∙m-2)  

  

Rest  

  

  

3.06+0.59  

  

  

3.17+0.54  

Maximum  10.5+1.50  9.67+1.42  

  

AVO2 difference (mL∙100 mL-1)  

  

 

Rest  

  

  

8.0+2.3  

  

  

6.8+1.9  

Maximum  14.3+1.3  

  

12.8+2.3  

  

   

  

SYSTOLIC FUNCTION  

Peak aortic velocity (cm∙s-1) 

                                     Rest  

  

138.5+19.7*  

  

118.7+22.3  

Maximum  250.0+25.1*  215.7+33.1  

  

S’adj (cm∙s-1∙mm-1)  
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Rest  1.2+0.1  1.1+0.3  

Maximum  

  

 3.2+0.5*  

  

2.9+0.3  

  

  

DIASTOLIC FUNCTION  

E (cm∙s-1)  

Rest  

  

  

   90+15.0*  

  

  

82+7  

Maximum  177+16  172+13  

   

E’adj (cm∙s-1∙mm-1)  

Rest  

  

  

1.92+0.38  

  

  

1.70+0.48  

Maximum  3.31+0.43  3.14+0.38  

  

E/ E’  

Rest  

  

  

6.3+1.5  

  

  

7.1+2.1  

Maximum  7.0+1.2  7.5+0.9  

 

* P ≤ 0.05. Stroke volume adjusted for body surface area (SVIndex) and cardiac output also adjusted 

for body surface area (QIndex). Arterial venous oxygen difference (AVO2). Peak early diastolic filling 

velocity (E). Peak longitudinal mitral annular velocities in systole (S’) and early diastole (E’). Both E’ 

and S’ were adjusted (adj) for heart size by LV length. E/E’ was calculated as an estimate of LV filling 

pressure and thus preload.  
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Table 4.  Cardiovascular measures at two relative exercise intensities in trained soccer players (SP) 

and control participants (CON).  Values are mean ± standard deviation.   

  

  SP (n=22)  CON (n=15)  

Heart Rate (bpm)  

RE (1)  

  

106+14*  

  

103+16  

RE (2)  125+14  120+16  

  

SVIndex (mL·m-2)  

RE (1)  

  

  

59+12*  

  

  

50+5  

RE (2)  60+11  54+7  

  

QIndex (L∙min-1∙m-2)  

  

RE (1)  

  

  

6.13+0.77*  

  

  

5.15+1.12  

RE (2)  7.20+0.92*  6.49+1.14  

  

AVO2 difference   

(mL∙100 mL-1)  

  

RE (1)  

  

  

11.4+1.5  

  

  

11.5+2.4  

RE (2)  11.8+1.3  

  

11.5+1.9  

  

  

SYSTOLIC FUNCTION  

  

 

  

 

S’adj (cm∙s-1∙mm-1)  

RE (1)  

  

  

1.8+0.3  

  

  

1.7+0.3  

RE (2)  

  

2.0+0.4  

  

2.0+0.3  
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DIASTOLIC FUNCTION  

E (cm∙s-1)  

RE(1)  

  

  

129+12.0*  

  

  

113+10  

RE (2)  148+19*  130+13  

   

E’adj (cm∙s-1∙mm-1)  

RE(1)  

  

  

0.25+0.04  

  

  

0.23+0.04  

RE(2)  0.26+0.05  0.26+0.04  

  

E/ E’  

RE(1)  

  

  

6.9+1.1  

  

  

6.7+0.9  

RE (2)  7.5+1.4  6.9+0.9  

 

*P < 0.05. Stroke volume adjusted for body surface area (SVIndex) and cardiac output adjusted for 

body surface area (QIndex). Arterial venous oxygen difference (AVO2). Peak early diastolic filling 

velocity (E). Peak longitudinal mitral annular velocities in systole (S’) and early diastole (E’). Both E’ 

and S’ were adjusted (adj) for heart size by LV length. E/E’ was calculated as an estimate of LV filling 

pressure and thus preload. Relative Intensity 1(RE(1)) corresponds to 46.5%VO2peak in the control 

participants and 46.7% in the soccer players. Relative Intensity 2 (RE(2)) corresponds to 

60.5%VO2peak in the control participants and 56.8% in the soccer players.    
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