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The α decay of 222Th populating the low-lying Jπ = 3− state, and also a proposed 1− state, in
218Ra has been observed. The observations suggest an excitation energy of 853 keV for the 1− state,
which is 60 keV above the 3− state. The hindrance factors of these α decays give a possible boundary
to the region of ground-state octupole deformation in the light-actinide nuclei. The relative positions
of the Jπ = 1− and 3− states suggest they are produced by an octupole-vibrational mechanism, as
opposed to α clustering or rotations of a reflection-asymmetric octupole-deformed shape.
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I. INTRODUCTION

The phenomenon of octupole collectivity in atomic nu-
clei has been a topic of theoretical and experimental in-
vestigation for over half a century [1–6]. Proton and
neutron orbitals with ∆l = ∆j = 3 give rise to an en-
hancement of the octupole part of the nucleon-nucleon
interaction. This can result in collective behaviour such
as octupole vibrations or, in nuclei with stronger oc-
tupole correlations, reflection-asymmetric octupole de-
formations, with possible evidence for the latter case
recently obtained from direct measurements of B(E3)
strengths [7]. The part of the nuclear chart where the
largest octupole correlations are expected is the light-
actinide region around N ∼ 134 and Z ∼ 88. The
ground states of nuclei in this region have been predicted
to evolve from spherical at N = 130, to quadrupole-
octupole deformed around N = 134 before possessing
just quadrupole-deformed shapes close to N = 140 [8].
Experimental determination of the boundaries of this
possible octupole-deformed region is important to guide
theoretical predictions of the strength of octupole corre-
lations and validate those which agree.
The N = 130 nucleus 218Ra is of interest in this regard

since it lies in the transitional region between the spher-
ical nuclei, just above the N = 126 neutron shell closure,
and the region of nuclei with expected octupole compo-
nents of their deformation at N ∼ 134 and Z ∼ 88. The
ground state of 218Ra is expected to be spherical [8], but
it has been shown that at high spins, the yrast states form
an alternating-parity sequence, with enhanced E1 transi-
tions between the positive- and negative-parity states [9–
13]. This high-spin structure is characteristic of strong
octupole correlations, and it has been suggested that the
octupole shape in this nucleus is stabilised by rotation
[12, 14]. The low-lying negative-parity states in 218Ra,
specifically, those with Jπ = 1− and 3−, can thus offer
valuable insight into the development of octupole collec-
tivity in this region as a function of N , and also as a
function of angular momentum.
In the 1980s, Gai et al. [10] tentatively assigned the

Jπ = 1− state with an excitation energy of 713 keV,
approximately 80 keV below the established Jπ = 3−

level. This observation was consistent with the interpre-
tation that the states result from α-particle clustering,
fitting well with the theoretical predictions of α-cluster
models [15]. However, subsequent in-beam γ-ray spec-
troscopy experiments could not reproduce this observa-
tion; Wieland et al. [13] stated that no energy levels were
present between the Jπ = 2+ and 3− states, in con-
tradiction to the level scheme proposed by Gai et al.,
and that the Jπ = 1− state, therefore, presumably lies
above the Jπ = 3− state. This ordering of the low-
energy negative-parity levels would contradict the theory
of α-particle clustering but would be consistent with an
octupole-vibrational picture. Gai, however, replied [16]
suggesting that the experiment performed by Wieland
was not optimised to search for the Jπ = 1− state and

that their non observation was not enough to warrant
their conclusions.
The new results presented in this paper are from the in-

vestigation of low-energy negative-parity states of 218Ra,
populated following the α decay of 222Th. Previous stud-
ies of the α decay of 222Th [17–21] have shown that it pro-
ceeds via a ground state (222Th) to ground state (218Ra)
transition with Eα = 7980(2) keV [21] and via a ground
state (222Th) to Jπ = 2+ excited state (218Ra) transi-
tion with Eα = 7599(2) keV [21]. In the present work,
α decays from the ground state of 222Th to the Jπ = 3−

and tentatively proposed 1− states of 218Ra have been
observed for the first time.

II. EXPERIMENTAL DETAILS

In the present work 222Th nuclei were produced
in the fusion-evaporation reaction 208Pb(18O,4n)222Th
with a beam energy of 95 MeV, a target thickness of
0.45 mg cm−2 and a 0.1 mg cm−2 carbon degrader foil.
The experiment was performed at the Accelerator Labo-
ratory of the University of Jyväskylä, Finland. An aver-
age beam intensity of ∼18 pnA was used for a duration of
∼157 hours. The target was located at the centre of the
SAGE spectrometer [22], which is used to detect prompt
γ rays and internal conversion electrons; however, data
from the SAGE spectrometer were not used for the re-
sults discussed here. The recoiling nuclei were separated
from fission fragments and unreacted beam ions using the
RITU gas-filled recoil separator [23, 24] and were sub-
sequently implanted into two double-sided silicon-strip
detectors (DSSDs), which are part of the GREAT spec-
trometer [25] located at a focal plane of RITU. The two
DSSDs each consisted of 40 horizontal and 60 vertical
strips giving a total of 4800 individual detector pixels.
An array of 28 silicon PIN diode detectors were located
upstream of the DSSDs positioned to detect charged par-
ticles that were emitted out of the DSSDs. A multi-wire
proportional counter (MWPC), which is normally placed
at the entrance of GREAT to measure the energy loss
and time-of-flight of recoils, was not used in this work
due to the low recoil energies of the 18O + 208Pb reac-
tion products. An array of three HPGe clover detectors
surrounding the DSSDs was used to detect γ and X rays
emitted by decaying implanted recoil nuclei.

III. DATA ANALYSIS

The DSSDs were calibrated using α particles emitted
by implanted nuclei, or those in their subsequent decay
chains, produced during the experiment. The α parti-
cles used were from 210Po [Eα = 5304.33(7) keV], 220Ra
[Eα = 7453(7) keV], 219Ra [Eα = 7678(3) keV], 213Rn
[Eα = 8088(8) keV] and 221Th [Eα = 8470(5) keV]. The
absolute efficiency for the detection of γ rays in the focal-
plane clover detectors as a function of γ-ray energy was
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established by comparing the intensities of α particles in
the DSSDs with intensities of γ-ray transitions in αγ-
coincidence data.
The α decays of 222Th nuclei were selected by corre-

lating either two (recoil-α) or three (recoil-α-α) signals
within a single pixel of the DSSDs. Chronologically, the
signals corresponded to: (i) the recoiling 222Th nucleus
entering the DSSD; (ii) the α particle emitted following
the decay of 222Th, with a time gate up to 16 ms (∼ seven
half-lives); and (iii) the α particle emitted following the
decay of 218Ra, with a time gate set up to 180 µs (∼ seven
half-lives). When measuring the 222Th α-particle ener-
gies, signals in the PIN detectors of GREAT were used to
veto any coincident DSSD signals, hence removing from
the spectra some of the partially deposited energies from
escaping α particles. However, when using the 218Ra α
decays to identify a recoil-α-α chain, no PIN detector
veto or energy gate was used so as to include the escap-
ing α particles.
Signals in the DSSDs were assumed to be due to im-

planting recoils, and therefore vetoed as α decays, if a
γ ray or conversion electron was detected in the SAGE
spectrometer at a time preceding the DSSD signal. A
two-dimensional gate was set for the veto over the recoils
time-of-flight through RITU (∼ 2 µs) and their energy
distribution in the DSSD (∼ 2 MeV). This somewhat
compensated for the absence of a MWPC at the entrance
of GREAT.
The data analysis was performed using the GRAIN

software [26], which was developed for use with data ac-
quired by the Total Data Readout system.

IV. RESULTS

Coincidences between α particles and γ rays were stud-
ied following the selection of a recoil-α chain and are
shown in Fig. 1(a). The α particles of 222Th were iden-
tified with the help of the diagonal lines shown on the
αγ-coincidence spectrum. The lines represent a constant
energy for the sum of the α-decay Q value, calculated
from the α-particle energy, and the γ-ray energy. They
are equal to the Q values between the 222Th ground state
and the ground state, Q[0+(222Th)→0+(218Ra)] (dashed
line), and Jπ = 2+ state, Q[0+(222Th)→2+(218Ra)] (dot-
dashed line), of 218Ra. In Fig. 1(a) the αγ coincidences
assigned to three α decays of 222Th to excited states in
218Ra are circled and labelled, with contaminant coinci-
dences from 213Rn, 219Ra and 221Th also indicated. The
α-particle energies, Eα, branching ratios, bα, and hin-
drance factors, f , (defined in Section VA) of the four α
decays identified from 222Th along with the spins, pari-
ties and energies of states populated in 218Ra are given
in Table 1. Figure 2 shows the level scheme of 218Ra
populated by the α decay of 222Th with the proposed
Jπ = 1− state included. In the present work, the half-
life of the 222Th ground state has been measured to be
T 1/2 = 1.964(2) ms. This value is lower than the previ-

ous measurements of 4(1) ms [17], 2.8(3) [18], 2.2(2) [19],
2.0(1) [20] and 2.237(13) [21].

A. α decay to the ground state and Jπ = 2+ state

in 218Ra

The α decays from the ground state of 222Th to the
ground state and the 2+ state at 389 keV of 218Ra have
previously been established, with α-particle energies of
7980(2) and 7599(2) keV, respectively [21]. In the present
work, the α decay which directly populates the ground
state of 218Ra was observed with energy 7986(3) keV and
branching ratio 98.16(5)%. Only random coincidences
between these α particles and background γ rays were
observed. The α decay to the 2+ state of 218Ra has been
observed in the present work with energy 7603(3) keV
and branching ratio 1.81(1)%. These 7603-keV α par-
ticles can be seen in Fig. 1(a) in coincidence with the
389-keV 2+ →0+ γ ray. As expected, these coincidences
appear on the Q[0+(222Th)→0+(218Ra)] line.

B. α decay to the Jπ = 3− state in 218Ra

In Fig. 1(a) coincidences between 222Th α particles
with Eα = 7205(4) keV, and γ rays with energies 389
and 404 keV are indicated. The 7205-keV α particles
are identified as being from 222Th by their half-life and
that of the subsequent 218Ra decays. Figure 1(b) shows
the γ rays in coincidence with the 7205-keV α-particles,
contaminant coincidences are present from the escaping
α decays of 219Ra (316 keV) and 221Th (331 keV). The
intensity of the 389-keV γ ray in coincidence with the
7205-keV α particle is larger than that of the 404-keV
γ-ray coincidences, when taking into account detector ef-
ficiencies and conversion coefficients. This is presumed
to be due to false coincidences between 389-keV γ rays
and the more abundant 7603-keV α particles which have
escaped from the DSSD without depositing their full en-
ergy. From the spectrum of α-particle energies in coinci-
dence with the 389-keV γ rays it is difficult to establish
that 7205-keV α particles are present. However, γγ coin-
cidence analysis of the spectrum in Fig. 1(b) reveals one
coincidence event between the 389- and 404-keV γ rays in
a virtually background free spectrum. This single count
would be expected when considering the intensity of the
404-keV γ ray and the efficiency of the detector array.
As the αγ coincidences with Eγ = 404 keV appear

on the Q[0+(222Th)→2+(218Ra)] line in Fig. 1(a), the
state populated by the α decay is likely to subsequently
de-excite to the 2+ state via a 404-keV γ ray. The transi-
tion energies from 3− → 2+ and 2+ → 0+ in 218Ra have
previously been established as 404 keV and 389 keV, re-
spectively, from in-beam studies [10–13]. The 7205-keV
α-particle peak is therefore assigned to the decay which
directly populates the Jπ = 3− state in 218Ra.
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C. α decay to the Jπ = 1− state

Coincidences between α particles with
Eα = 7143(4) keV, and γ rays with energy 853 keV are
indicated on Fig. 1(a). Again, the 7143-keV α particles
were identified as being from 222Th by their half-life
and that of the subsequent 218Ra α decays. Figure 1(c)
shows γ rays in coincidence with 7143-keV α-particles;
contaminant coincidences are present from escaping α
decays of 221Th (576 keV) and 219Ra (592 and 806 keV).
The problem of contaminant αγ coincidences from
213Rn, which has a similar γ-ray energy, was overcome
by requiring a recoil-α-α tag. Figure 1(d) shows the αγ
spectrum where the 213Rn αγ coincidences are removed
by the recoil-α-α requirement; six counts in the 222Th
αγ cluster remain. These coincidences appear on the
Q[0+(222Th)→0+(218Ra)] line, so it is probable that the
state populated by the α decay then de-excites directly
to the ground state of 218Ra. This gives a state in 218Ra
at 853 keV, which has not previously been observed. No
evidence was found that this state at 853 keV decays to
the 2+ state at 389 keV.
The hindrance factor, f , of the α decay populating the

853-keV state is similar to that populating the Jπ = 3−

state. It is therefore assumed that the two states have a
similar underlying structure, as described in Section VA.
As no negative-parity state is known at 853 keV it is pro-
posed as a candidate for the Jπ = 1− state in 218Ra. This
proposed assignment is not in agreement with the previ-
ous tentatively assigned Jπ = 1− state at 713 keV [10].
Also, population of the 1− state by α decay would be
expected from consideration of the intensity with which
the Jπ = 3− state is populated. It should be pointed
out that no αγ coincidences with γ rays of 713 keV were
observed in the present data.

V. DISCUSSION

A. α-decay hindrance factors

The hindrance factor of an α decay is the ratio of
its experimentally observed partial half-life to the par-
tial half-life calculated using a simple model where the
preformed α particle exists in the potential of the daugh-
ter nucleus [27]. This eliminates the Q-value dependence
of the decay rate and quantifies the relationship between
the wavefunctions of the initial state in the mother and
the final state in the daughter nuclei; a greater overlap
gives a lower hindrance factor. The hindrance factor of
a ground-state-to-ground-state α decay for an even-even
nucleus is set to unity, meaning that hindrance factors
can also be considered as a measure of the similarity of
the ground state and excited state of a daughter nucleus
populated by an α decay. Figure 3 shows the hindrance
factors of α decays to the first Jπ = 1− and 3− states
in even-even isotopes of Th, Ra and Rn around the re-
gion of expected octupole collectivity [28–34]. Here, the

Jπ = 1− and 3− states in 218Rn have been assigned as
the 840.2- and 796.9-keV levels respectively, observed fol-
lowing α decay [35]. These levels were not observed using
in-beam spectroscopy following a multi-nucleon transfer
reaction [36], however, a negative-parity band was es-
tablished down to Jπ = 5−. The levels are presently as-
signed to have Jπ = 1− and 3− from their decay branches
to the 0+, 2+ and 4+ members of the ground-state band
[35].
If the low-lying negative-parity states were the re-

sult of rotation of a reflection-asymmetric nuclear shape
then they would be different projections of the reflection-
asymmetric ground state. The reduction of the hindrance
factors for decreasing N below 140 has therefore previ-
ously been interpreted as the onset of intrinsic reflection
asymmetry [37]. In this work, a reversal of this trend is
observed at N = 130 for Ra isotopes, possibly suggesting
a departure from static octupole deformations in these
nuclei in which the states are no longer described as ro-
tational. This would be consistent with predictions of a
near-spherical ground state at N = 130 [8] and can be
interpreted as a low N boundary to the region of ground-
state octupole deformations in the light actinides. An
increase in hindrance also occurs at N = 132 for the Rn
isotopes which has previously been noted in Ref. [38].

B. Relative positions of Jπ = 1− and 3− levels in
218Ra

The possibility of α-particle clustering in the actinides
has been proposed in Ref. [39]. In this model, low-
lying negative-parity states arise from the mixing of
the ground-state quadrupole band and a dipole phonon
produced by oscillations between the α-particle cluster
and the remaining core. In even-even nuclei this gives
positive- and negative-parity states with the Jπ = 1−

state lying below the 3−. Energies of the 1− and 3−

states produced by this α-particle clustering mechanism
in Ra and Th were calculated by Daley and Iachello [15]
and were shown to agree with the available experimental
data for even 218−228Ra and 222−230Th. The comparison
included the tentative assignment for the Jπ = 1− state
in 218Ra at 713 keV, 81 keV below the Jπ = 3− state [10];
a result contradicted by the present work. The inverted
ordering of the Jπ = 1− and 3− levels suggests that nei-
ther α-particle clustering or rotation of an asymmetric
ground state are responsible for the low-lying negative
parity states in 218Ra. In this context, it should also be
noted that the anomalously large reduced α-decay width
of 218Ra, cited as further evidence for α-particle cluster-
ing, has subsequently been contradicted [13, 21, 40, 41].
The evolution of low-lying negative-parity octupole-

vibrational states moving from spherical to quadrupole-
deformed systems is well understood [42]. In spheri-
cal nuclei, negative-parity states can be produced by
the 2+ ⊗ 3− multiplet of the coupled quadrupole and
octupole vibrational phonons [43, 44]. The Jπ = 1−
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state of the multiplet has E(1−) ≃ E(2+) + E(3−) and
therefore appears above the 3− phonon state. In nu-
clei with static quadrupole deformation the 3− octupole-
vibrational phonon couples with this deformation [45].
This produces four states with Kπ = 0−, 1−, 2− and 3−

where K is the projection of the phonon angular momen-
tum onto the nuclear symmetry axis. These states are the
band heads of four octupole-vibrational bands, of which
those with Kπ = 0− and 1− have a lowest energy state
with Jπ = 1−. Therefore in moving from a spherical to
a well-quadrupole-deformed nucleus the relative ordering
of the 1− and 3− states will reverse.
A study of the systematics of the low-lying negative-

parity states observed in both the even-even lanthanides
(Z ≃ 56, N ≃ 90) and light actinides (Z ≃ 88, N ≃ 136)
was carried out by Cottle and Bromley [46]. By plotting
E(3−)−E(1−) against E(4+)/E(2+) for the nuclei in the
lanthanide region, it was shown that the behaviour is con-
sistent with that expected for the octupole-vibrational
description of the low-lying states, as shown in Fig. 3(a)
of Ref. [46]. However, the interpretation of the results
for the Rn, Ra and Th nuclei was less conclusive due to
the 218Ra data point not matching the expected trend
for the octupole-vibrational description. Figure 4 shows
the variation of E(3−) − E(1−) with E(4+)/E(2+) for
the nuclei 224−232Th, 218−228Ra and 218−222Rn [28–34]
with the present result for 218Ra replacing that tenta-
tively assigned by Gai et al. [10]. The new data point
is consistent with that expected for an octupole vibra-
tional description of the states in 218Ra, and also across
the light actinides.
Predictions by Nazarewicz and Olanders [8] give a pic-

ture of octupole vibrations about a spherical nuclear
shape for 218Ra and rotation of an asymmetric ground
state when increasing the neutron number to N ≃ 134.
The evolution of the relative positions of the 1− and 3−

states, as shown in Fig. 4, is not only consistent with the
evolution of octupole-vibrational states in an increasingly
quadrupole deformed system, but could also be said to
be consistent with the predicted onset of rotational states
of an octupole-deformed ground state. Evidence for this
second scenario is also provided by the evolution of the
hindrance factors presented earlier.

VI. SUMMARY

In summary, a state with an excitation energy of
853 keV has been identified in 218Ra and proposed as
a candidate for the Jπ = 1− state. This observation was
made following the identification of α decay of 222Th to
both the proposed 1− state and 3− state in 218Ra by
means of αγ coincidence analysis. The hindrance factors
of these α decays are larger than those populating anal-
ogous states in nuclei with larger N . This then reverses
the trend in the Ra isotopes, of decreasing hindrance fac-

tor as the neutron number is reduced. These observa-
tions are presented as possible evidence for a boundary
to the region of static octupole deformations in the ra-
dium isotopes. The excitation energy of the 1− state
above that of the 3− state is presented as an indication
that octupole vibrations produce these low-energy lev-
els, as opposed to α-particle clustering or rotations of a
reflection-asymmetric ground state. The data for the Th,
Ra and Rn isotopes are also consistent with a picture of
octupole vibrations of a near-spherical ground state at
N = 130, moving to rotations of a reflection-asymmetric
ground state at N = 134.
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knowledge GAMMAPOOL support for the JUROGAM
detectors. EP, JFS, DMC, DH, MS and MJT acknowl-
edge support of the Science and Technology Facilities
Council (STFC). EP, JFS and MS acknowledge support
of the Scottish Universities Physics Alliance (SUPA).
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TABLE I. α-particle energies, Eα, branching ratios, bα, and hin-

drance factors, f , of α decays from the 222Th ground state to the

final state Jπ
f
at an energy Ef in 218Ra.

Eα (keV) Jπ
f Ef (keV) bα (%) f

7986(3) 0+ 0 98.16(5) 1

7603(3) 2+ 389 1.81(1) 3.38(2)

7205(4) 3− 793 1.8(3)x10−2 15(3)

7143(4) (1−) 853 1.4(4)x10−2 13(4)
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FIG. 1. Energies of coincident α particles and γ rays following
the decay of 222Th. Panel (a) shows the coincidences when
requiring a recoil-α correlation. The diagonal lines represent a
constant energy for the sum of the α-decayQ value, calculated
from the α-particle energy, and the γ-ray energy; The energies
are those between the 222Th ground state and the ground
state (dashed) and 2+ state (dot dashed) of 218Ra. Panels (b)
and (c) show the γ rays in coincidence with α-particle energies
of 7205 keV and 7143 keV, respectively. Panel (d) shows the
αγ coincidences when requiring a recoil-α-α correlation, as
discussed in the text.
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FIG. 4. Relative positions of the 1− and 3− states in even-
even 224−232Th, 218−228Ra and 218−222Rn nuclei [28–34] com-
pared with the ratio of their first 4+ and 2+ state energies,
E(4+)/E(2+). The new value for 218Ra is enlarged and the
previously assigned value is shown as an open symbol; data
points in brackets are tentative.
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