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Abstract 

Metallic-based bipolar plates exhibit several advantages over graphite-based plates, including 

higher strength, lower manufacturing cost and better electrical conductivity. However, poor 

corrosion resistance and high interfacial contact resistance (ICR) are major challenges for 

metallic bipolar plates used in proton exchange membrane (PEM) fuel cells. 

Corrosion of metallic parts in PEM fuel cells not only increases the interfacial contact 

resistance but it can also decrease the proton conductivity of the Membrane Electrode 

Assembly (MEA), due to catalyst poisoning phenomena caused by corrosive products. In this 

paper, a composite coating of polytetrafluoroethylene (PTFE) was deposited on stainless steel 

alloys (SS304, SS316L) and Titanium (G-T2) via a CoBlast
TM

 process. Corrosion resistance 

of the coated and uncoated metals in a simulated PEM fuel cell environment of 0.5M H2SO4 

+ 2ppm HF at 70
o
C was evaluated using potentiodynamic polarisation. ICR between the 

selected metals and carbon paper was measured and used as an indicator of surface 

conductivity. Scanning Electron Microscopy (SEM), 3D microscopy, Energy Dispersive X-

ray (EDX), X-Ray Diffraction (XRD), and contact angle measurements were used to 

characterise the samples. The results showed that the PTFE coating improved the 

hydrophobicity and corrosion resistance but increased the ICR of the coated metals due to the 

unconductive nature of such coating. Thus, it was concluded that it is not fully feasible to use 

the PTFE alone for coating metals for fuel cell applications and a hybrid coating consisting of 

PTFE and a conductive material is needed to improve surface conductivity. 
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1 Introduction 

Proton exchange membrane (PEM) fuel cells are an attractive power source for a variety of 

mobile and stationary power applications due to their high efficiency, fast start-up, relative 

lightweight, low operating temperature and low environmental impact [1], [2]. Recently, 

PEM fuel cells have received an increased interest in the automobile sector as a potential 

alternative to the internal combustion engine [3]. However, in order to meet the full 

requirements of the automotive industry, the developers of PEM fuel cells have to address 

many essential issues related to cost, operation and durability of fuel cell components, 

particularly in comparison with internal combustion engines. One of the key strategies for 

improving the performance and durability, while reducing the cost of the PEM fuel cell, is to 

design and develop low-cost bipolar plates with high corrosion resistance and surface 

conductivity [4]–[7].  

Bipolar plates are key components of a PEM fuel cell stack and perform vital roles such as 

distributing the fuel and oxidant to the catalyst layer, removing the water from the fuel cell 

and collecting the produced current [8]. Traditionally, bipolar plates are fabricated from 

graphite due to its high corrosion resistance, relatively low surface contact resistance and 

high surface conductivity in the PEM fuel cell environments. However, graphite is brittle, 

permeable to gases, and expensive to mass produce. Thus, metals and carbon-based 

composites have been considered to develop cost-effective and durable bipolar plates that can 

replace graphite. Metals and their alloys provide several advantages over the carbon-based 

materials, as they possess higher mechanical strength, can be made thinner to achieve higher 

power density, are more durable, not permeable, and have higher cost effectiveness, with 

respect to mass production. However, metals considered for bipolar applications are prone to 

corrosion and exhibit high contact resistance in PEM fuel cell environments (pH=2-3 at ~ 

70°C) [9]. The dissolved metal ions, generated from corrosion, can poison the active sites of 

the membrane electrode assembly (MEA) resulting in decreased power output of the fuel cell 

[10], [11]. Furthermore, these metals develop a passive oxide layer that increases ICR [12]. 

Therefore, a considerable amount of research has investigated the corrosion behaviour of 

metal alloys such as stainless steel (SS) [11], [13]–[18], titanium (Ti) [19]–[21], and 



aluminium (Al) [22], [23]. SS alloys have been considered as the reference materials for 

metal bipolar plates [11], [24]–[26]. The performance of SS in the PEM fuel cell environment 

is strongly depended on alloying elements such as Cr, Ni and Mo [25], [26]. The SS alloys 

with higher Cr and Ni content exhibit thinner oxide layer resulting in lower ICR which make 

such alloys recommended for bipolar plate applications [25]. Ti and its alloys were also 

considered as a suitable material for bipolar plate applications due to its high strength to 

weight ratio and also its outstanding chemical stability in acidic environments. It was 

indicated through many investigations that uncoated Ti has better anti-corrosion properties 

than the uncoated SS316 in PEM fuel cell environments, but the power output was lower due 

to the thicker oxide formed on the surface of Ti and the released ions such as Ti
+2

 [19], [25], 

[27]. Al and its alloys are attractive metals for metallic bipolar plates due to low density, cost 

effectiveness and ease of fabrication features [28]. However, Al and its alloys are not as good 

as SS and Ti due to its higher corrosion rate and shorter life. 

To overcome the corrosion and high ICR problems, significant research efforts have been 

directed into improving the corrosion resistance via surface modifications. Surface 

coatings/treatments for metallic bipolar plates applications are mainly divided into: carbon-

based and metal based coatings [29]–[31]. Carbon-based coatings include conductive 

polymers, graphite and composite coatings [1], [8]. The metal-base coatings for bipolar plate 

applications include noble metals, metal nitrides, metal carbides, and conductive metal oxides 

[1], [8]. Whilst some of these coatings e.g. metal nitrides have been extensively investigated; 

studies on other coatings such as PTFE are relatively rare. The PTFE coating is well known 

for its potentials to improve the hydrophilicity of the bipolar plates that in turn allows for 

better water management and reduce the mass transport loses of the PEM fuel cell [32]. Fu et 

al [32] reported on the performance of Ag–PTFE composite coating on 316L stainless steel 

used as bipolar plate of PEM fuel cell. It was found that the PTFE has a significant influence 

on the hydrophobic characteristics of SS, as a greater contact angle was observed in the 

PTFE-coated surface, which implies better hydrophobicity. Similar observations were 

reported by Show et al [33] who described that the contact angle of SS increased from 60
o
 to 

110
o
 upon using the  PTFE coating. Show and Takahashi [34] reported on the ex-situ and in-

situ performance of carbon nanotube (CNT)/PTFE composite film. It was found that using of 

CNT/PTFE coating on SS improved corrosion resistance and increased the lifetime of the 

fuel cell. 

 



Overall, PTFE coating has received very limited attention for PEM fuel cell bipolar plate 

application. Therefore, in this paper, we explore the suitability of PTFE-coated stainless steel 

and titanium for use in a PEM fuel cell environment. The PTFE coating is deposited on 

metals using a powder coating processes named CoBlast
TM

 process. The suitability of such a 

coating for corrosion protection and surface conductivity in simulated a PEM fuel cell 

environment is evaluated via electrochemical polarisation and interfacial contact resistance 

(ICR) techniques, respectively. 

2    Experiment 

2.1 Materials and coatings 

In this study, titanium G2 and stainless steel type 316L and 304 were selected as metallic 

substrates. The coating powder consisted of a blend of PTFE powder (Zonyl
TM

, Dupont, 

USA) and alumina powder (particles size: 50 µm; Comco Inc., CA, USA) mixed in a 

predefined ratio in a laboratory turbula for fifteen minutes. Alumina facilitates removal of the 

surface oxide in order for the coating powder (PTFE) to be impregnated onto the metal 

surface by tribo chemical bonding and mechanical interlocking [35]–[37]. Table 1 

summarises the metals investigated and their respective designation. 

2.2 Deposition Process 

Prior to deposition, the various substrates were thoroughly wiped with isopropanol, air dried 

and arranged on the platform of the CoBlast
TM

 coating equipment at a working distance of 20 

mm from the CoBlast
TM

 nozzle head. The metal surfaces were thereafter modified by blasting 

with streams of the processed powder fed through the CoBlast
TM

 nozzle at 90 psi and speed 

of 12 mm/s [35]. The blasting process was continued in the perpendicular direction until the 

entire surface was covered. After coating, the modified surfaces were blasted with dry air to 

remove loosely adhered material and washed with isopropanol. 

2.3 Characterisation 

2.3.1 Surface characterisation 

Surface morphologies of the samples were examined with a bench top ZEISS EVOLS 15 

SEM operated at 15kV accelerating voltage in the secondary and backscattered electron mode 

while compositional analysis of the samples was obtained using EDX (INCA, Oxford 

instruments).  



Surface microscopy was conducted with a VHX-2000 digital microscope (Keyence, USA). 

Images were taken using the 500X lens and 3D imaging permitted a sharp depth of field. 

XRD analysis was conducted with a D8 Advance Bruker X-ray diffractometer with CuKα 

radiation anode source operated at accelerating voltage of 40 kV and beam current of 40 mA 

in the 10°– 80° range.  

A surface roughness tester TR-200, (CV Instruments Europe, UK) was used to measure the 

surface roughness of the samples pre and post coating. Values of 5mm, 0.8mm and 0.01μm 

were selected for the cut-off length, step and resolution respectively. The test was repeated 

three times for each sample. Ra and Rq values were recorded in each test and the mean values 

were calculated. 

2.3.2 Contact angle measurements 

Water contact angle measurements were conducted with a FTA200 (First Ten Angstroms, 

Portsmouth, USA) contact angle analyser. A predefined volume of distilled water was 

dropped on the surfaces of the sample via a computer controlled syringe pump. Images of the 

water drop on the surface of the samples were captured and then analysed with the FTA32 

Video 2.0 software. Mean values for three measurements are reported. 

2.3.3 Interfacial contact resistance 

ICR between the different samples and carbon paper was evaluated by a method previously 

described by Wang et al [11]. The setup consisted of two pieces of Toray Teflon treated 

carbon paper (TGP-H-090, Fuel Cell Store, US) sandwiched between the coated samples and 

two copper electrodes. A direct current of 1 A was supplied to the copper electrode via a 

XHR 300-3.5DC power source. The voltage drop across the setup was measured with 

Tektronix DMM912 digital multi-meter while gradually applying compressive forces with a 

Zwick Roell (Z5 kN) ultimate tensile strength machine. The total resistance of the setup was 

calculated based on Ohm’s law (R=V/I) with correction made for the resistance of the carbon 

paper/copper interfaces. The ICR can be calculated as follows: 

 

 2 × 𝐼𝐶𝑅 = 𝐴 × (𝑅 − 𝑅𝑐𝑝) Equation. 1 

where A is the surface area of the sample, Rcp is the resistance of the interface between the 

carbon paper and copper electrode, R is the overall resistance of all interfaces including 

carbon paper/copper electrode interface and copper electrode/tested sample interface.  



2.3.4 Electrochemical polarisation 

The electrochemical test setup used for evaluating the corrosion behaviour of the samples 

consisted of a flat corrosion cell (Princeton Applied Research, K0235, USA) in which the 

working electrode (coated and uncoated metal samples) are pressed against a Teflon “O” ring 

exposing 1 cm
2
 of the working electrode to the electrolyte, 0.5M H2SO4 + 2ppm HF with an 

Ag/AgCl (saturated KCl) as the reference electrode and a platinum mesh as the counter 

electrode. The setup was connected to a Gamry Interface 1000 (Scientific & Medical 

Products Limited, UK) potentiostat. Potentiodynamic scans were conducted at 70° C. Prior to 

and during the polarisation experiments, the electrolyte was bubbled thoroughly with 

pressurised air or hydrogen to depict the PEM fuel cell cathodic and anodic environments 

respectively while the open circuit potential (OCP) was measured for 15 minutes. 

Potentiodynamic scans were conducted at a scan rate of 1 mV/s from −1 V vs.OCP to 1 V vs. 

reference. 

3 Results and discussion 

3.1 Surface characterisation 

Figure 1 displays the surface morphologies of uncoated and coated metals. The SEM image 

revealed a surface topography indicating the presence of metal peaks throughout the surface 

as a result of the combined abrasive and plastic deformation effects of CoBlast, however the 

CoBlast process does not provide 100% coating coverage [26]. The roughness profile as 

shown in Table 2 confirms the roughness increase caused by the CoBlast process.  

Figure 2 shows the X-ray diffraction pattern of the coated and uncoated materials 

respectively. The XRD patterns for all coated metals confirmed the presence of PTFE on the 

near surface characterised with a peak at 18.9
o
. Also, low intense peaks of alumina, which 

originated from the grit material in the abrasive powder used in the CoBlast process, can be 

observed as well as that for peaks of the substrates.   

Figure 3 shows an optical comparison of coated and uncoated samples before and after the 

polarisation tests. It is identified that most uncoated samples, exhibited surface degradation 

evidenced by the roughening and darkening of the surface and the emergence of pits on the 

substrates. The SS316L sample did not show surface degradation but became slightly brighter 

post polarisation testing. The PTFE coated samples, identified with a white covering on the 

surface, are seen to have less evidence of pitting but they have darkened in most cases, 



indicating that the surface was not fully coated. SS316L here also exhibited a brighter surface 

due to the exposure to the acidic environment. 

3.2 Contact angle 

The photographs of a water droplet on the surfaces of coated and uncoated metals along with 

the mean value of contact angles with water (φ) are shown in Figure 4. The contact angles of 

the different samples are 76.44
o
, 130.84

o
, 70.31

o
, 128.67

o
, 83.85

o
, 127.45

o
 for TIG2, CTIG2, 

SS316L, CSS316L, SS304, CSS304, respectively. It is clear that the contact angles of the 

PTFE-coated samples are greater than the uncoated counterparts. This is a proof that the 

PTFE coating can alter the surface of metals from hydrophilic to hydrophobic nature. The 

improved hydrophobic characteristic of the PTFE-coated bipolar plate enables better water 

removals and stabilises the electric output of the fuel cell.  

3.3 Interfacial contact resistance 

The values of interfacial contact resistance for the coated and uncoated samples were 

measured to get a depth understanding of the impact of coating on internal impedance of the 

fuel cell. The variations of ICR with the compaction force of uncoated and coated samples 

are shown in Figure 5 for SS316L, SS304, and TiG2 respectively. It is clear from this figure 

that the ICR decreased as the compaction force increased for coated and uncoated samples. A 

rapid decrease in ICR values was observed at low compaction force followed by a gradual 

stability at a certain value. This is due to the fact that at low compaction force, the carbon 

paper (GDL layer) comes in contact with the lower area on the surface of sample. As the 

compaction force increases, the contact area between carbon paper and coating surface 

increases until a maximum value is reached where no further increase in effective contact 

area can be noticed, similar observation was also reported by Tian et al [38].  

Uncoated grit-blasted (GB) and polished (PO) samples, used for comparison, offer similar 

behaviour in terms of ICR for samples under investigation. However, the coated samples 

exhibited higher values of contact resistance in comparison with uncoated samples. This 

behaviour may be attributed to the low electrical conductivity of the PTFE coating that leads 

to higher electric resistance in the coated samples. Also, the surface roughness of the samples 

has a profound effect on the value of ICR where the higher surface roughness leads to higher 

ICR [39]. As seen from Table 2, the coated samples have higher surface roughness than the 

uncoated samples, and thus higher ICR values were reported for coated samples. However, 

the ICR values of coated samples come close to that of uncoated samples at compaction 

forces of 40-50 N.cm
-2

.  



A comparison of ICR values for coated and uncoated samples at compaction force of 50 

N.cm
-2

 is presented in Figure 6. Lower ICR values were obtained for TIG2 samples while 

both stainless steel samples showed similar ICR values. It is confirmed that the coated 

samples have higher ICR values when compared to uncoated samples. 

3.4 Electrochemical polarisation 

Figure 7 presents the potentiodynamic polarisation curves obtained for coated and uncoated 

substrates exposed to 0.5M H2SO4 + 2ppm HF at 70° C. Air and hydrogen gas were bubbled 

into the electrolyte to simulate the PEM fuel cell cathode and anode environments 

respectively. Table 3 shows the corrosion parameters for the materials. Comparing these 

parameters, it can be seen that in the simulated cathode environment, all PTFE coated 

stainless steel samples exhibited higher corrosion potentials (Ecorr) values and similar 

corrosion current density (Icorr). This confirms that the PTFE coating can slightly improve the 

corrosion protection of stainless steel in the simulated cathode PEM fuel cell environment. 

For the TiG2 samples, on the other hand, the PTFE coated samples exhibited similar Ecorr 

values with the substrate, but a higher Icorr. This indicates that the corrosion resistance of the 

TiG2 substrate was not improved in the cathodic environment. It was noticed that in the 

simulated anodic environment, all PTFE coated samples exhibited higher corrosion resistance 

than the substrate, evidenced by a higher Ecorr value and a decrease in Icorr of the samples. The 

higher Ecorr values, observed with the coated samples, decreases the corrosion tendency of the 

PTFE coated samples in the simulated anodic environment of the PEM fuel cell. At the same 

time, a lower Icorr implies that the corrosion rate of these samples was reduced to some extent. 

The enhanced corrosion resistance of the PTFE coated samples, under the simulated anodic 

environment is certainly related to the loss of passivity by the substrate in such an 

environment. 

4 Conclusion 

PTFE coated metals were investigated for the first time for their suitability to fabricate PEM 

fuel cell bipolar plates. The corrosion and conductivity behaviour of PTFE coated stainless 

steel and titanium substrates have been analysed and characterised. CoBlast
TM

 process was 

used to deposit a PTFE coating on the metal substrates. Contact angle measurements were 

conducted and showed a noticeable improvement in the hydrophobic property of the PTFE-

treated surfaces which is greatly beneficial for the water management in PEM fuel cell. ICR 

was measured for all samples to examine the effect of the coating layer on the conductivity of 



metal. Higher ICR values were observed for the coated samples, due to higher surface 

roughness and lower electrical conductivity of the PTFE coated samples. It is considered that 

the conductivity behaviour of such coated samples may be improved by adding a conductive 

material to PTFE such as silver (Ag). The corrosion current density and corrosion potential of 

the PTFE coated samples in a simulated anodic and cathodic PEMFC environment of 0.5M 

H2SO4 + 2ppm HF at 70°C were investigated. The results showed that, in the cathodic 

environment, the corrosion resistance of PTFE coated stainless steel substrates was slightly 

improved while no improvement was noticed for TiG2 substrate. On the other hand, the 

corrosion resistance of all coated samples was enhanced in the anodic environment and this 

may be due to the loss of passivity in this environment.   
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Figure 1 Topographical view of the coated and uncoated samples. 
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Figure 2: XRD analysis of (a) Ti, (b) SS samples 
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Figure 3 Optical images of coated and uncoated samples. 
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Figure 4: Water contact angels of coated and uncoated metals 

 

 

  



Figure 5: Variation of ICR with compaction force of uncoated and coated (a) TIG2 (b) 

SS316L (c) SS304 
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Figure 6: Comparison of ICR values at compaction force of 50 N.cm
-2

 

 

 

 

  



Figure 7: Potentiodynamic polarisation curves of PTFE coated and uncoated samples exposed 

to 0.5M H2SO4 +2ppm HF at 70
o 
C under (a) cathodic (b) anodic PEMFC conditions 
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Table 1 Material samples 

Material Grade 

Sample Name 

Uncoated 

CoBlast 

PTFE 

Coated 

Stainless 

Steel 

316 L SS316L CSS316L 

304 SS304 CSS304 

Titanium G2 TiG2 CTiG2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table 2 Mean values of three reading for roughness of uncoated and coated samples. 

Standard deviation is indicted below the values 

 
 

 

 

 

 

 

  

Roughness 

Parameters (µm) 
SS316L CSS316L SS304 CSS304 TiG2 CTiG2 

Ra 
0.199 

 ± 0.029 

1.744 

±0.052 

0.092 

±0.021 

1.635 

±0.086 

0.353 

±0.023 

1.969 

±0.123 

Rq 
0.252 

±0.034 

2.184 

±0.076 

0.146 

±0.076 

2.059 

±0.028 

0.442 

±0.019 

2.478 

±0.157 



 

Table 3: Corrosion parameters of coated and uncoated samples in the simulated cathode and 

anode PEMFC environment 

 

Material 

Cathode Anode 

 

Ecorr  

( V vs Ag/AgCl)  

 

Icorr  

( µA/cm
2
) 

 

Ecorr 

( V vs Ag/AgCl) 

 

Icorr 

( µA/cm
2
) 

CSS316L 0.204 1.48 0.08 8.70 

SS316L 0.007 4.13 -0.178 49.2 

CSS304 -0.115 10 0.157 3.46 

SS304  -0.1769 53.8 -0.25 60.1 

CTiG2 0.13 413.0 0.121 6.84 

TiG2 0.11 20.4 0.002 63.5 

 


